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Abstract

In previous studies of particle growth we have synthesized binary metal oxide aerosols and have observed the evolution of
internal phase segregation during growth of molten nanodroplets. We have also generated NaCl=metal aerosols in which the metal
nanoparticle is enveloped within a salt droplet. In both systems the nanoparticles were grown in the molten state. In this paper we
propose a model which incorporates phase segregation in a binary aerosol. The model assumes that complete phase segregation
is the thermodynamically favored state, that no thermodynamic activation energy exists, and that the phase segregation process is
kinetically controlled. The results indicate that a steady state behavior can be reached in which the characteristic time for aerosol
coagulation and the characteristic time for the growth of the minority phase coincide such that the number of distinct segregated
entities within each aerosol droplet is constant.
The results suggest what we believe to be an important concept that can be utilized in materials synthesis. This is that the

major phase can be used to moderate the growth rate of the minor phase by changing the characteristic encounter frequency and
therefore the eventual growth rate of the minority phase. In particular, temperature, which does not play an important role in
aerosol coagulation, is seen to be a very sensitive parameter for the growth of the minority phase nanoparticles. We discuss the
parameter space necessary for this to occur. ? 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The study of aerosol dynamics is often limited to homo-
geneous, single-component aerosol particles. However, it
is becoming increasingly apparent that multi-component
aerosol particles are of both industrial importance and
an area in need of signi<cant research activity. We have
been involved in a number of multi-component aerosol
dynamics studies with heterogeneous aerosol particles.
One of our main goals in this research is to study the
evolution of the internal state of the aerosol droplets.
For example, we have conducted studies on the forma-
tion of binary metal oxide systems with application to
removal of heavy metals (Biswas & Zachariah, 1997;
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Biswas, Yang, & Zachariah, 1998) as well as the for-
mation of materials with novel and interesting properties
(Zachariah, Aquino-Class, Shull, & Steel, 1995; Ehrman,
Aquino-Class, & Zachariah, 1999a; Ehrman, Friedlander,
& Zachariah, 1999b).
Our initial success in growing interesting microstruc-

tures (Zachariah et al., 1995) indicated that further
research into the mechanistic aspects of the growth
was warranted. In subsequent studies we have em-
ployed both in-situ interrogation into the formation
process (McMillin, Biswas, & Zachariah, 1996),
multi-component aerosol dynamic modeling (Biswas,
Wu, Zachariah, & McMillen, 1997) and molecular dy-
namics computation (Zachariah, Shull, McMillin, &
Biswas, 1996). One of the primary conclusions was
that at the high temperatures where these materials
are typically grown, nanodroplets are in a liquid-like
state, and that phase segregation taking place within the
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Fig. 1. The schematic illustration of the temporal evolution of a two component aerosol coagulation and phase segregation.

Fig. 2. Evolution of the aerosol (SiO2) and minor phase (Fe2O3) during the growth of SiO2=Fe2O3 nanocomposites.

nanodroplet was probably limited by the transport within
the nanodroplet.
Our goals in this paper are: (1) to develop a simple

model, which describes both aerosol growth, and the
evolution of the internal morphology of multi-component
liquid aerosols in which the phases are immiscible.
A more thorough model is detailed in Struchtrup,
Luskin, and Zachariah (2001). (2) to evaluate a new
strategy for controlling the vapor-phase growth of
nanoparticles by changing the particle–particle en-
counter frequency by embedding the nanoparticle in
another matrix which itself resides in an aerosol
phase.
In the course of this paper we shall use the terms minor

phase and enclosure interchangeable to refer to the com-
ponent within each aerosol droplet, and droplet or aerosol
when referring to the major phase. The enclosures are
considered as an aerosol inside the droplet, whose coagu-

lation takes place due to Brownian motion. The temporal
evolution of the aerosol phase is schematically depicted
in Fig. 1. Due to surface tension eFects the enclosures
are spherically shaped within the aerosol droplets. In this
treatment we will not describe individual enclosures in-
side individual droplets, but rather supplement the usual
statistical formulation for the droplets with the statistics of
the enclosures. Our model describes the evolution of the
total number density of the droplets along with their vol-
umes and the average number of enclosures per droplet.
The main assumptions in the derivation of the model are
that the droplets and the enclosures are assumed to be
monodisperse, and that the number of enclosures per unit
volume in each droplet is assumed to be uniform over all
droplets. Using our model we also investigate the volume
growth of the minor phase due to the presence of the ma-
jor phase. It is of particular signi<cance that our results
show that introducing the major phase can moderate the
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growth rate of the minor phase and leads to interesting
possibilities with regard to controlling particle sizes.
The parametric model developed in the paper is applied

to the two binary systems, SiO2=Fe2O3 and NaCl=Ge,
where SiO2 and NaCl are major phases and Fe2O3 and
Ge are minor phases and for which we have experimen-
tal results (Ehrman et al., 1999a, b). An example of the
SiO2=Fe2O3 system is presented below in Fig. 2. We can
see that at short residence times the dark Fe2O3 enclo-
sures are greater in number and smaller in size than those
observed at longer residence times. It should be reiterated
that when growing, both phases are in a liquid state.

2. Theory

We consider aerosol droplets consisting of two immis-
cible components in a constant volume ratio. Our goal is
to determine the distribution of droplet volumes and the
internal state of the droplet with time. In this work we
construct a simple model describing the evolution of the
aerosol-enclosure system.
Individual enclosures suspended in a droplet, collide

and stick together through various mechanisms. Based on
the size of the particles and their mean free path, we as-
sume that the enclosures collide=grow as a result of their
Brownian motion within the aerosol droplets, and that
droplets, which are in free molecular Iow, collide=grow
based on kinetic theory. The coagulation of the droplets
and the enclosures are assumed to occur by instanta-
neous coalescence of spherical particles. This is a good
approximation since most of our experimental work was
conducted at high temperature (1200–2500 K) where the
components are liquids.
For coagulating aerosols the general dynamic equa-

tion characterizes the temporal evolution of the droplet
(aerosol) number density, N (t; V ). The evolution of
N (t; V ) is known (Friedlander, 2000) and satis<es the
following integro-diFerential equation:

dN (t; V )
dt

=
1
2

∫ V

0
�(U;V −U )N (t; U )N (t; V −U ) dU

−
∫ V

0
�(U;V ) N (t; U )N (t; V ) dU; (1)

where �(U;V ) is the collision coeLcient. For the free
molecular and the Brownian regimes the collision coef-
<cient is given

�F(U;V )

=
(
3
4	

)1=6(6kT
�

)1=2( 1
U
+
1
V

)1=2
(U 1=3 + V 1=3)2

and

�B(U;V )=
2kT
3�

(
1
U 1=3 +

1
V 1=3

)
(U 1=3 + V 1=3);

respectively. Here k denotes Boltzmann’s constant, T is
the temperature, � is the density of the droplets, and � is
the viscosity of droplets.
In this work we restrict ourselves to the simplest

case and approximate the particles as monodisperse
(U =V ); in which case the collision coeLcients reduce to
(Fuchs, 1989)

�F(V; V )=4
√
2
(
3
4	

)1=6(6kT
�

)1=2
V 1=6;

�B(V; V )=
8kT
3�
:

Since over the time range of the interest the change in V 1=6

is insigni<cant, we take the volume in the expression to
be constant and equal to the initial volume of the droplet
in our further calculations.
We denote Ntot(t) to be the total number density of the

particles, given by

Ntot(t)=
∫
N (t; V ) dV:

Integrating (1) for monodisperse droplets over V we <nd
dNtot
dt

=− 1
2
�FN 2

tot : (2)

Similarly, for the total number of the enclosure ntot in a
droplet of volume V we have
d(ntot=V )
dt

=− 1
2
�B(ntot=V )2: (3)

We further assume that the number of enclosures per unit
volume of droplet, remains approximately the same for
each droplet. The validity of this assumption comes from
realizing that the mass ratio of all components in a strictly
coagulating aerosol system is a constant in time. Another
way to view this assumption is that since the characteristic
coagulation time of enclosures in each droplet is given by
V=�Bntot ; our assumption is equivalent to stating that the
characteristic coagulation time of the enclosures in each
droplet is approximately the same. Thus, ntot=V represents
the evolution of the mean number of the enclosures per
droplet.
For convenience we drop tot from the variables N and

n in our calculations. We denote by V (t) the volume of
the droplet at time t; so that the conservation of total
volume of droplets gives us

V (t)N (t)=V0N0; (4)

where V0 and N0 are initial volume of droplets and their
initial number density. The combination of Eqs. (2)–(4)
dN (t)
dt

=− 1
2
�FN (t)2;

d(n(t)=V (t))
dt

=− 1
2
�B(n(t)=V (t))2;

N (t)V (t)=N0V0
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constitute the closed system for N (t)—the number den-
sity of the aerosol droplets, n(t)—themean number of en-
closures per droplet, and V (t)—the volume of the droplet
at time t. The initial conditions for the system is given
by N (t=0)=N0; n(t=0)= n0; V (t=0)=V0.
To solve the system we note N (t) can be determined

from the <rst equation

N (t)=
N0

1 + 1
2�

FN0t
:

To <nd the solution of the second equation we write it as

d
dt

(
n(t)N (t)
V0N0

)
=− 1

2
�B
(
n(t)N (t)
V0N0

)2
:

The latter can be easily solved for n(t)N (t):

n(t)=
1
N (t)

N0n0
1 + 1

2(�
B=V0N0)N0n0t

:

Substituting the expression for N (t) we have

n(t)=
V0n0 + 1

2�
FN0V0n0t

V0 + 1
2�

Bn0t
: (5)

As t → ∞ we have

n(t)→ n∞=
�F

�B
N0V0:

This implies and leads to the interesting result that there
exists a steady state value for the number of the enclo-
sures in a droplet; which is proportional to the initial
mass concentration of droplets; and the relative collision
cross sections in the free and Brownian regimes.
By considering the derivative of n(t)

dn(t)
dt

=
1
2n0V0(�

FN0V0 − �Bn0)
(N0V0 + 1

2�
Bn0t)2

we see that n(t) increases to its <nal constant value if
�FN0V0¿�Bn0 and decreases in the opposite case. Note
that the condition �FN0V0¿�Bn0 represent the relation
between the characteristic time (tF) for the coagulation
of the droplets in the free-molecular regime and the char-
acteristic time (tB) for the coagulation of the enclosures
in the Brownian regime. The ratio between these charac-
teristic times is given as

tB

tF
=
�FN0V0
�Bn0

:

Thus n(t) increases towards its <nal constant value if the
characteristic time for the above ratio is greater than unity,
and decreases in the opposite case. In the latter case the
model must be supplemented with the condition n(t)¿ 1.
Based on the asymptotic value of n(t) we can conclude

the following: (1) if the total volume of the droplets in-
creases then the average number of the enclosures per
droplet, n(t); also increases; (2) if the viscosity of the

major phase increases then n(t) also increases; (3) if the
temperature increases then n(t) decreases due to a drop
in the viscosity of the major phase.
We next turn our attention to the relative volume

growth of the enclosures due to the presence of the
droplets, i.e., what eFect does the major phase have on
the growth rate of the enclosures? Assuming that the
volume fraction of the enclosures is the same initially
for all droplets we have

n(t)u(t)= cV (t);

where n(t) is the average number of the enclosures per
droplets de<ned by (5), u(t) is the average volume of
the enclosures, V (t) is the volume of the droplets, and
c is the volume fraction of the enclosures per droplet
and remains constant in time. The volume of the droplet
can be calculated from the conservation of the mass,
N (t)V (t)=N0V0; for the droplet as

V (t)=V0(1 + 1
2�

FN0t):

Then taking into account the expression for the evolution
of n(t); u(t) can be calculated

u(t)= u0 + 1
2c�

Bt;

where u0 = cV0=n is the initial volume of the enclosures.
In the absence of the major phase the enclosures coag-

ulate in the free molecular regime. Their volume w(t) in
this case can be readily calculated:

w(t)=w0 + 1
2�

F�t;

where w0 = u0 is the initial volume of the particles, and
� is the volume fraction of the particles. Now we can
calculate the relative volume change for the enclosure
due to the presence of the droplets

u(t)
w(t)

=
u0 + 1

2c�
Bt

u0 + 1
2��

Ft
:

For large times this ratio becomes c�B=(��F). Note that
we obtain this ratio provided n(t)¿ 1. It is interesting to
note that c�B=(��F)=1=n∞.
We note for clarity in presentation that in this model

the change of V 1=6 in the collision coeLcient �F(V; V )
has been neglected assuming that over the time range
of interest the change in V 1=6 is insigni<cant. The eFect
of V 1=6 can be easily incorporated into the model. In
this case the equation for the number density of droplets
(Eq. (2)) is given by dNtot=dt = −0:5�F0N 11=6

tot , where
�F0 = 4

√
2(3=4	)1=6(6kT=�)1=2(N0V0)1=6.

3. Numerical results

3.1. In our <rst example we apply the theory developed
above, to the binary SiO2=Fe2O3 system. To implement
the numerical examples we consider a case when all silica
(SiO2) droplets are initially at a radius r=5 nm and a
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Fig. 3. The average number of enclosures per droplet as a function
of time for diFerent temperatures for the SiO2=Fe2O3 system.

number density of 1012 1=cm3. The droplets constitute
the background media (SiO2) for the coagulation of the
enclosures (Fe2O3). The viscosity of the silica is highly
temperature sensitive and is given by Kingery, Bowen,
and Uhlmann (1976)

�=10−8:7(1−3556K=T ) kg=m s:

The density of the silica is �=2:4 g=cm3. For the en
closures, we assume that each droplet initially contains
3000 enclosures. We consider three diFerent tempera-
tures: T =2000; 2300 and 2600 K. For these tempera-
tures we plot the average number of the enclosures per
droplet as a function of time in Fig. 3. This plot shows
that the number of the enclosures reaches a near constant
<nal value by either increasing or decreasing, depending
on the value of �FN0V0=�Bn0. Denoting the characteristic
times for the molecular regime by tF and for the Brown-
ian regime by tB we have

tB

tF
=
�FN0V0
�Bn0

:

We can express this ratio of the characteristic times as a
function of the temperature by including the temperature
dependence of the collision coeLcients and the viscosity,
so that

log(tB=tF)=
T ∗

T
− log(T ) + C(�; N0; V0; n0):

Here C(�) is given by

C(�) = log(N0V0=n0)

+log

(
4
√
2
(
3
4	

)1=6(6k
�

)1=2
V 1=6

)
− log(8k=a);

where we have used the expression �= a exp(T ∗=T ) for
the viscosity. The ratio log(tB=tF) is plotted against T ∗=T

Fig. 4. The ratio of the characteristic times for enclosure and droplet
coagulation as a function of temperature for the SiO2=Fe2O3 system.
T∗=30800 K.

in Fig. 4. It is quite clear that for this system the range
of ratios of characteristic times spans values both larger
and smaller than unity, over what is really only relatively
moderate changes in temperature. We discuss the signi-
<cance of this result in later sections, however, it should
be obvious to the reader that such dramatic changes in
growth rate could not be achieved in a single component
coagulating aerosol system.
Next for this system we calculate the volume growth

for the enclosures and compare that to the growth
that would be achieved were the major phase ab-
sent. As we found in the previous section the ratio
of the volume of the enclosures in the presence of
the droplets to that in the absence of the droplets is
given by c�B=(��F). A value of unity implies that
the major phase has no eFect on the growth rate of
enclosures. Plotting this quantity as a function of the
temperature in Fig. 5 we observe that by introducing
the major phase we can moderate the growth of the
minor phase by several orders of magnitude. At least
qualitatively this is consistent with experiment and
suggests an opportunity to change the relative growth
rate of nanoparticles by changing the encounter fre-
quency, through the use of a second matrix. Indeed
because of the high activation energy of the viscosity
of the major phase, moderate changes in temperature
lead to signi<cant eFects on the average volume of the
enclosures.
3.2. In the second example we consider the binary sys-

tem NaCl=Ge. This example is taken from a generic gas
phase synthesis method in which Na + metal halide ⇒
metal + NaCl (SteFens, Zachariah, DuFaux, & Axel-
baum, 1996; Ehrman et al., 1999a). Other researchers and
we have used this method to make a variety of metal and
metal=carbides=nitrides.
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Fig. 5. The relative (to no major phase present) volume growth of the
minor phase as a function of temperature for the SiO2=Fe2O3 system.

Fig. 6. The ratio of the characteristic times of enclosure and droplet
coagulation for the Ge=NaCl system. T∗=4462 K.

In this example we assume that the volume fraction
of the salt (droplet particles) is 10−5; and the relative
volume fraction of the enclosures is 25% (based on the
stoichometry of the reaction of sodium and germanium
tetrachloride). The viscosity of the salt as a function of
the temperature is given by

�=2:3e− 5exp
(
4462K
T

)
kg
m s

:

The temperatures considered here are those consistent
with the experiment, T =1100 and 1300 K. Assuming
initial radius of the salt particles to be 2 nm we <nd the
initial number density for the droplets, N =1015 1=cm3.
Similar to the <rst example we plot log(tB=tF) as a func-
tion T ∗=T; where T ∗=4462 K in Fig. 6. Under these con-
ditions �FN0V0=�Bn0 is small, and thus the coagulation
of enclosures is much faster than that of the droplets. We

should expect that the aerosols would evolve to a system
in which there will only be one enclosure per droplet. In-
deed this is what has been observed experimentally under
conditions where the enclosures are melted, so that when
they collide they coalesce (Ehrman et al., 1999a). Since
there is only one enclosure per droplet the relative growth
of the minor phase due to the presence of the major phase
is insigni<cant. The problem in this case is that NaCl,
which is a useful material because it is easily removed
after synthesis from the minor phase by solvent extrac-
tion, has much too low viscosity to control the growth
of the minor phase. This implies that in order to have a
major phase that can moderate the growth rate of the mi-
nor phase we need to use a major phase which is more
viscous than NaCl. The data for viscosity of molten salts
presented in Jans, Dampier, Lakshminarayanan, Lorentz,
and Tomkins (1968) suggests the use of ZnCl2. At 593 K
for example the viscosity of ZnCl2 is 4525 cP. Taking the
relative concentration of Ge to be c=0:1; and the total
volume fraction to be ’=2e − 5 we obtain the relative
volume growth due to the presence of ZnCl2 to be 0.13.
This result indicates that were one to employ ZnCl2 as
the major phase, one should expect to see a signi<cant
moderation of the growth rate of the minor phase.

4. Relevance to controlling nanoparticle growth

These modeling results indicate that it is possible to
devise systems in which nanoparticle growth rates in
an aerosol phase can be slowed down through judicious
choice of a matrix that controls the encounter frequency.
We saw that for the silica=iron oxide case the growth
rate of the minor phase could be signi<cantly impacted.
On the other hand the salt=germanium results showed no
such moderation. In both cases the model is qualitatively
consistent with experimental observation.
The silica=iron oxide system was of interest to us ex-

perimentally because it oFered the opportunity to make a
superparamagnetic nanocomposite (Zachariah et al.,
1995). However, more generically the silica=iron oxide
system and similar systems has limited value because
the minor component cannot be isolated from the major
component. On the other hand the use of salt has the
potential advantage of ease of removal to release the
minor phase. Of course, the results showed that NaCl
had minimal or no eFect. This implies that in order to
have a major phase that can moderate the growth rate
of the minor phase we need to use a major phase which
is signi<cantly more viscous than NaCl. The data for
viscosity of molten salts presented in Jans et al. (1968)
suggests that ZnCl2 might be a possible candidate with
a viscosity of 4525 cP at the melting point. Taking the
relative concentration of a minor phase to be c=0:1; and
the total volume fraction to be ’=2e − 5 we obtain a
relative volume growth due to the presence of ZnCl2 to
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be 0.13. Under these circumstance we can conclude that
this salt is a good candidate medium for moderating the
growth rate of nanoparticles.

5. Concluding remarks

In this paper we presented a model which describes
both aerosol growth, and the evolution of the internal
morphology of multi-component liquid aerosols in which
the phases are immiscible. In the derivation of the model
we assumed that the number of the enclosures per unit
volume in each droplet remains constant over all droplets
during growth. Though this assumption imposes a restric-
tion on the evolution of the polydispersity of the system,
it should capture the major aspects in the evolution of a
heterogeneous aerosol. In particular our model shows that
the average number of enclosures per droplet increases
when the total volume of the droplets increases, when
the viscosity of the surrounding media increases, or when
temperature decreases. Using our model we estimated the
growth rate of the minor phase due to the presence of the
major phase. The parametric model developed here was
applied to the two binary cases, SiO2=Fe2O3; NaCl=Ge
and the results were shown to seem to be consistent with
experiments.
Our model suggests that the growth rate of the minor

phase in the case NaCl=Ge is insigni<cant, but that the
choice of another more viscous salt such as ZnCl2 seems
to possess the requisite viscosity.
Finally, we believe that the concept of using a sec-

ond phase to control the encounter frequency can be
used to slow the growth of nanoparticles under condi-
tions where they are liquid like. Temperature plays a
much more important role in coagulation in this system
than in a single-component aerosol system since it has a
very strong inIuence on the viscosity of the major phase
and therefore the internal transport properties within the
aerosol droplet. In future work we will generalize our
approach by incorporating the size distribution of the en-
closures into the model.
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