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The paper presents the development of a hybrid Monte Carlo
(MC) method for the simulation of the simultaneous coagulation
and phase segregation of an immiscible two-component binary
aerosol. The model is intended to qualitatively model our prior
studies of the synthesis of mixed metal oxides for which phase-
segregated domains have been observed in molten nanodroplets. In
our previous works (J. Aerosol Sci. 32, 1479 (2001); Chem. Eng. Sci.
56, 5763 (2001); submitted for publication) we developed sectional
and monodisperse models where the internal state of the aerosol par-
ticles was described. These methods have certain limitations and it is
difficult to include additional physical effects into the framework.
Our new approach combines both constant volume and constant
number Monte Carlo methods. Similar to our previous models, we
assume that the phase segregation is kinetically controlled. The
MC approach allows us to compute the mean number of enclo-
sures (minor phase) per droplet, average enclosure volume, and
the width of the enclosure size distribution. The results show that
asymptotic behavior of enclosure distribution exists that is indepen-
dent of initial conditions, which is very close to the continuum self-
preserving distribution. Temperature is a key parameter because it
allows for a significant change in the internal transport rate within
each droplet. In particular, increasing the temperature significantly
enhances the Brownian coagulation rate and lowers the number
of enclosures per droplet. As a result, the MC results indicate that
the growth of the minor phase can be moderated quite dramati-
cally by small changes in system temperature. These results serve
to illustrate the utility of this synthesis approach to the controlled
growth of nanoparticles through the use of a majority matrix to slow
down the encounter frequency of the minor phase and therefore its
particle size. C© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Aerosol growth processes and in particular aerosol dynamics
modeling have generally been limited to single-component (on
a molecular or phase basis) systems. Furthermore, even those
studies that have employed more than one component assume
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that the aerosol is a homogeneous mixture of all the multicom-
ponent constituents. However, we know that phase segregation
will take place within an aerosol droplet if the thermodynamics
and kinetics are favorable in a manner analogous to that ob-
served in bulk materials. We have been involved in a number of
multicomponent aerosol dynamics studies with heterogeneous
aerosol particles. One of our main goals in this research is to
study the evolution of the internal state of the aerosol droplets.
For example, we have conducted studies on the formation of bi-
nary metal oxide systems with application to removal of heavy
metals (1, 2) as well as the formation of materials with novel
and interesting properties (3–5).

Our initial success in growing interesting microstructures (6)
indicated that further research into the mechanistic aspects of
the growth was warranted. In subsequent studies we employed
in situ interrogation into the formation process (7), multicom-
ponent aerosol dynamic modeling (8), and molecular dynamics
computation (9). One of the primary conclusions was that, at the
high temperatures where these materials are typically grown,
nanodroplets are in a liquid-like state and that phase segrega-
tion taking place within the nanodroplet was probably limited
by transport within the nanodroplet.

In the course of this paper we shall use the terms minor phase
and enclosure interchangeable to refer to the component within
each aerosol droplet and droplet or aerosol when referring to
the major phase. The mathematical formulation of the prob-
lem allows one to consider the enclosures as particles inside the
droplet, where the minor-phase growth takes place due to con-
tinuum interception and the major-phase growth (the aerosol
phase) takes place due to free molecule coagulation. The tem-
poral evolution of the aerosol and enclosures is schematically
depicted in Fig. 1. Because our experimental studies were all
undertaken when both components were in the molten state,
we only observed spherical droplets for both the major and the
minor phase, which also justifies the use of an instantaneous
coalescence assumption in our model.

In our previous work (10) we developed a 2D sectional model
to describe the aerosol droplets and their internal state and em-
ployed basic statistics to describe the enclosure population inside
the droplet. That model was limited in that it was strictly valid
only if the mean volume of the enclosures in a droplet were
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the same for each droplet at any instant in time. The use of a
sectional approach also makes it more difficult to introduce ad-
ditional effects without significant reformulation of the general
structure of the aerosol general dynamic equation (GDE).

Monte Carlo methods have the advantage that multiscale and
time phenomena can be simultaneously solved without the re-
quirement of a single unifying governing multivariate equation.
Moreover, Monte Carlo methods provide an intuitive tool for
simulating discrete systems and allow us to study finite size
effects and spatial correlations. In the simulation of heteroge-
neous aerosols Monte Carlo methods are also attractive because
they do not require any a priori assumptions about the enclosure
distribution in each droplet. In this paper we propose a hybrid
Monte Carlo technique to describe the growth of the heteroge-
neous aerosol particles and their internal state. This approach
combines two MC simulations; one simulates the coagulation
of the droplets and the other simulates the interaction between
the enclosures.

The Monte Carlo model developed in the paper is applied
to our experimental observations of the binary SiO2/Fe2O3 sys-
tem, where SiO2 is the major phase and Fe2O3 is the minor
phase (3, 5). An example of TEM results for the SiO2/Fe2O3

system is in Fig. 2. We can see that at short residence times
the dark Fe2O3 enclosures are greater in number and smaller
in size than those observed at longer residence times. It should
be reiterated that when growing, both phases are in a liquid
state (high-temperature growth) and aerosol droplets consist of
two immiscible components (based on known phase behavior).
These latter points provide the justification for a model based
on transport-limited growth. Our goal is to determine the dis-
tribution of the droplet volumes and the internal state of the
droplet as a function of time. Using our Monte Carlo approach,
we calculate various statistical quantities, such as mean number
nclosures per droplet, mean enclosure volumes of each
average enclosure volume, normalized second moment
e droplet–enclosure growth process.

of the enclosures, etc., and show that their asymptotic behavior
are independent of time. Some of these quantities describe the
effect of the major phase on the growth of the enclosures and
others allow us to find the nature of the enclosure size distri-
bution. In particular, our computations reveal that the enclosure
distribution reaches the self-preserving size distribution. An-
other interesting observation is that the normalized variance of
the mean enclosure volumes in each droplet reaches an asymp-
totic value, which depends on the temperature. Interestingly,
the distribution of the mean enclosure volumes of each droplet
can behave very differently from the distribution of the droplet
volumes at low temperatures.

In the next section we briefly describe the mathematical (con-
tinuous) model and the general framework that we have em-
ployed in our previous works to model the aerosol growth and
their internal structure. In Section 3 we describe the hybrid MC
algorithm and in Section 4 we discuss the implementation of the
algorithm. Finally, the numerical results and observations are
presented in Section 5.

2. MATHEMATICAL MODEL

The particle size distribution of a polydisperse aerosol under-
going coagulation is governed by the integro-differential equa-
tion

d N (t, V )

dt
= 1

2

∫ V

0
K (U, V − U )N (t, U )N (t, V − U ) dU

− N (t, V )
∫ ∞

0
K (V, U )N (t, U ) dU, [1]

where N (t, V ) is the particle size distribution function at time t
and K (U, V ) is the collision frequency function for two particles

with volume U and V . The appropriate form of the collision fre-
quency function depends on the type of collision environment in
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FIG. 2. Evolution of the aerosol (SiO2) and minor phase (

which the particles exist. In particular, the free-molecule regime
coagulation is given by

K F (U, V ) =
(

3

4π

)1/6(6kT

ρ

)1/2(1

U
+ 1

V

)1/2(
U 1/3 + V 1/3

)2
,

[2]

for the continuum regime is given by

K D(u, v) = 2kT

3µ

(
u1/3 + v1/3

)( 1

u1/3
+ 1

v1/3

)
, [3]

Here, k denotes Boltzmann’s constant, T is the temperature, µ

is the viscosity of the medium comprising the droplets, and ρ is
the density of droplets. Of particular note is that the collision fre-
quency function in the free-molecule regime is relatively inde-
pendent of temperature. As a result, the growth rate of an aerosol
cannot be significantly impacted through changes in tempera-
ture. By contrast, Brownian coagulation depends on viscosity,
which can for some working fluids be quite temperature sensi-
tive. So that while a gas is not very sensitive to temperature, a
liquid can be, and we might consider that one could control the
growth of particles if they are embedded within a viscous fluid
comprising an aerosol droplet.

Following our previous works, we assume that the droplets
coagulate in a free-molecular regime, while the enclosures
grow/coagulate in a continuum regime. Denoting the number
e enclosures in a droplet with volume V , by
e2O3) during the growth of SiO2/Fe2O3 nanocomposites.

nV (u, t)/V , we can write a population balance equation for the
enclosures,

dnV (t, v)

dt
= 1

2V

∫ v

0
K D(u, v − u)nV (t, u)nV (t, v − u) du

− 1

V
nV (t, v)

∫ ∞

0
K D(v, u)nV (t, u) du. [4]

Note that nV (u, t) du is the number of enclosures with volume
between u and u + du in the droplet of volume V . In general,
to find the enclosure distribution for the whole system, one
needs to add the enclosure distributions over all droplets:

ntotal(u, t) =
∫ ∞

0
nV (u, t)N (V, t) dV . [5]

Here, we denote by ntotal(u, t) the enclosure distribution of the
whole system and N (V, t) the number density of the droplets.
Since Eq. [4] is nonlinear and the operation [5] is linear,
one cannot derive an equation for the evolution of ntotal(u, t)
analytically. Moreover, since the number of the droplets in the
system is typically very large, it is impossible to simulate the
individual enclosure interaction in each droplet separately.

In our previous work (10, 11), we developed a 2D general
dynamic equation that accounts for the enclosure distribution in
each droplet. In particular, we look for the evolution of Nm(V, t),
where N (V, t) dV is the number of droplets with volume be-
m

tween V and V + dV and with m enclosures. The evolution of
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Nm(V, t) is given by

d Nm(t, V )

dt

= 1

2

∫ V

0
σ (U, V −U )

m−1∑
k=1

Nk(t, U )Nm−k(t, V −U ) dU

− Nm(t, V )
∫ ∞

0
σ (U, V )

∞∑
k=1

Nk(t, U ) dU

+
∞∑

k=m+1

γk→m Nk(t, V ) −
m−1∑
k=1

γmi →k Nm(t, V ). [6]

The quantity γk→m dt denotes the probability that in a droplet
of volume V the number of enclosures will change from n to
m during the time dt . The first two terms in Eq. [6] account for
the gain and loss due to agglomeration of droplets, while the
last two terms refer to the gain and loss due to interaction of the
enclosures inside a droplet of volume V .

Modeling of γk→m dt usually requires additional assumptions
since in general one cannot model the details of the enclosure
size distribution without complete knowledge of particle size
distribution. The 2D GDE system presented above was solved by
a sectional representation of Eq. [6] with an assumption of either
monodisperse (11) or log-normally distributed enclosures (10).

One of the advantages of MC approaches is that we do not
require any a priori assumption about the enclosure distribution
in each droplet.

3. HYBRID MONTE CARLO (MC) MODEL

Monte Carlo methods to simulate particulate growth pro-
cesses are not new, and the theoretical foundations have been dis-
cussed extensively in the literature (12–17). Basically, the Monte
Carlo approach utilizes probabilistic tools to study a finite di-
mensional subsystem to infer the properties of the whole system.
It has been shown rigorously (18) that the Monte Carlo approach
approximates the integro-differential GDE for the number con-
centration of particles of any given size as a function of time.

There are a number of Monte Carlo techniques that have been
developed for the growth of dispersed systems and generally fall
into the class of constant-number or constant-volume methods.
There are in general two types of finite-volume Monte Carlo
techniques. In the first approach the user sets the time interval
�t and uses Monte Carlo to decide which and how many events
will be realized. This method is sometimes referred to as time-
driven Monte Carlo. In the second approach, the user selects
a single event and then advances the time by an appropriate
increment. In the method presented here we employ the first
method for the enclosures or minor phase and the second method
to describe the droplets/aerosol. More precisely, we first select
a single coagulation event for the droplets and compute the time

�T required for this event. Then, for each droplet we calculate
the enclosure interactions that occurred during this time interval.
ND PHASE SEGREGATION 33

The finite number of particles used in the simulation intro-
duces certain limitations. Assuming the simulation begins with
N particles initially, then after N − 1 coagulation events, there
is one particle left, and the simulation must be terminated. In
general, the accuracy of Monte Carlo is proportional to 1/

√
N ,

where N is the number of particles in the system. Thus, in prac-
tice, the simulation must be terminated well before the formation
of one particle to preserve the accuracy of the calculation. To cir-
cumvent the problem, previous workers (19, 20) have developed
MC algorithms where the number of particles are kept constant
by adding a new particle at each time step or by topping up the
system (doubling the number of particles) when the number of
particles has dropped to half the initial value. We refer to this
MC approach as constant-number MC method.

In simulating heterogeneous aerosols, we need to describe
both the internal state of the aerosol droplets and their growth.
For the droplets we employ a finite-number Monte Carlo and top
up our system when the number of particles are halved. For the
internal state of the droplets we employ the finite-volume Monte
Carlo approach and following each droplet coagulation calculate
the successful enclosure interactions in each droplet. Note that
to model the internal state of the droplets, we need complete
knowledge of the enclosure distribution in each droplet. In our
previous work the internal state of the droplets employed an a
priori assumption about the size distribution. Here, however, we
wish to relax this constraint to track the evolution of the higher
statistical moments. The MC approach allows us to compute
higher moments of the distribution without the need to make a
priori assumptions about the size distribution.

At each step of the simulation, droplets i with volume Vi and
j with volume Vj are selected to coagulate, and a new droplet of
size Vi + Vj is formed with a probability that is proportional to
the coagulation probability, Ki j . In the free-molecule regime, the
collision probability is proportional to K F

i j = K F (Vi , Vj ) and in
the continuum regime to K D

i j = K D(Vi , Vj ).
To calculate the mean interevent time between two successive

events, we consider a system with initial number concentration
C0 and total number N0 droplets in the simulation. Then, as
outlined by Smith and Matsoukas (20), the effective real vol-
ume being simulated is N0/C0, so that one coagulation event in
our (model) system represents C0/N0 actual droplets per unit
volume. To connect our simulations to real time, we calculate
the interevent time by noting that the time between two events
is inversely proportional to the sum of the rates of all possible
events. If for example k successful events are realized, then the
remaining number of droplets in the system is Nk = N − k, and
the total number concentration of the system Ck is given by

Ck

C0
= Nk

N0
.

We can then determine the mean interevent time after k

coagulations as (20)
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�Tk = 2N0

C0
∑Nk−1

i=1

∑Nk−1
j=1 K F

i j

. [7]

In particular, after one droplet coagulation event, we compute
the interevent time by

�T1 = 2N0

C0
∑N0−1

i=1

∑N0−1
j=1 K F

i j

, [8]

where N0 is the number of particles represented in the simula-
tion. Introducing the notation 〈K F

i j 〉 for the mean coagulation
probability

〈
K F

i j

〉 =
∑N

i=1

∑N
j=1 K F

i j

N (N − 1)
,

we can write [7] as

�Tk = 2N0

C0
〈
K F

i j

〉
Nk−1(Nk−1 − 1)

.

For each droplet we use the interevent time to determine the
number of successful enclosure interactions (coagulation-driven
growth) before the next droplet coagulation. This unfortunately
restricts the time step because modeling the internal state of the
droplets requires complete knowledge of enclosure distribution
within each droplet.

In an analogous manner to that of the droplets, we also define
the mean interevent time for the enclosures in a droplet of volume
V as

�t = 2V∑n−1
i=1

∑n−1
j=1 K D

i j

,

where n is the number of the enclosures and n/V is their number
density. From this we can now determine how many successful
enclosure interactions occur during one droplet coagulation in-
terevent time, �T1, equal to

R1 = �T1

�t
. [9]

This number gives an upper bound for the number of success-
ful enclosure interactions because the interevent time for the
enclosure interaction increases as the number of the enclosures
decreases inside the droplet. Thus, the number of successful en-
closure interactions inside the droplet during the time interval
�T1 is given by the integer k, which satisfies

k∑
i=1

2V〈
K D

i j

〉
(n − i)(n − i − 1)

≤ �T1

k+1∑

≤

i=1

2V〈
K D

i j

〉
(n − i)(n − i − 1)

. [10]
ZACHARIAH

On the left-hand side of [10] we have the total time needed for the
coagulation of k enclosures and on the right-hand side the total
time needed for the coagulation of k + 1 enclosures. In the next
section we describe the accurate computational implementation
of the enclosure interaction.

When the number of droplets drops to half the initial value,
we replicate the droplets and their internal state. To preserve the
physical connection to real time, the topping up process must
preserve the average behavior of the system corresponding to
the time prior to topping up. In particular, one has to ensure
that the characteristic time for droplet collisions stays the same,
and doing this requires an increase in the system volume in
proportion to the increase in droplets. On the other hand, if
the number of enclosures in a droplet becomes too large for
the simulation, one can truncate the enclosure system within a
droplet by randomly picking a certain number of enclosures and
adjusting the corresponding computational volume.

4. IMPLEMENTATION OF HYBRID MC

To implement the numerical computation, we define the co-
agulation probability by

pi j = K F
i j

K F
max

,

where K F
max is the maximum value of the coagulation kernel

among all droplets. This probability should in principle be nor-
malized by the sum of K F

i j , but the choice of K F
max is often

employed to increase the rate of acceptance. It also has the ad-
vantage of saving CPU time because the computation of the sum
of ki j over all the enclosures is quite expensive.

A coagulation event is determined to occur only if a randomly
drawn number from a uniform distribution is smaller than the
probability of the coagulation pi j . If the coagulation is rejected,
two new particles are picked and the above steps are repeated
until the coagulation condition is satisfied. On successful com-
pletion of this step, the selected droplets with volume Vi and Vj

are combined to form a new particle with volume Vi + Vj and
the total number of the droplets in the computation is decreased
by 1. The time increment �T is calculated as discussed in the
previous section.

Based on the coagulation time of two droplets �T1, the enclo-
sure interactions in each droplet are performed in the following
way. After each lth successful enclosure collision in a droplet of
volume V , we compute the interevent time for a collision,

�tl = 2V∑n−l
i=1

∑n−l
j=1

〈
K D

i j

〉 .

If this interevent time is less than �T1, one performs additional
collisions until the sum of the interevent enclosure collision
times is larger than �T1. As soon as the sum of interevent en-

closure collision times becomes larger than �T1, one stops the
enclosure coagulation and computes the extra time spent during
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FIG. 3. Flow chart of the h

the enclosure interactions. Assume there were k enclosure in-
teractions with the interevent times �tl (l = 1, 2, . . . , k). Then,
the extra time spent during the enclosure interactions is defined
for each droplet and given by

k∑
l=1

�tl − �T1.

This extra time is taken into account at the next time step �T1.
In particular, the enclosure coagulation time at the next time step
inside the droplet is increased by the amount of extra time. At
the end of each time step the extra time spent during enclosure
interaction is updated. Moreover, if two droplets collide, then
the extra time spent in the resulting droplet is taken to be the
sum of the extra times spent in each droplet.

Note that the enclosure interaction in a droplet is performed
in the same way as for droplets. The probability of the collision
of randomly selected two enclosures i and j is given by

K D
i j
pi j =
K D

max

,

brid Monte Carlo algorithm.

where K D
max is the maximum value of the coagulation kernel

among all droplets.
When the number of the droplets are halved, we replicate the

droplets and their internal state. A flow chart of our Monte Carlo
algorithm is depicted in Fig. 3.

5. SIMULATION RESULTS

We apply the hybrid MC approach to the growth of
SiO2/Fe2O3 binary aerosol. We consider a case where we begin
with monodisperse droplets of radius R0 = 5 nm and number
concentration 1012 cm−3. The initial monodisperse enclosure
concentration is assumed to be uniform across all droplets.

We consider growth at two temperatures, 2300 and 2600 K,
both of which were operating conditions for our experiments.
Since silica is the major phase, it is the working fluid whose
viscosity will govern the rate of Brownian transport of the minor
phase and therefore the growth rate of enclosures. The viscosity
of the major component silica (SiO2) as a function of temperature
is given by (21)
µ = 10−8.6625 (1− 3556.03 K
T ) kg/ms,
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and the density of SiO2 is held constant at ρ = 5.5 g/cm3. From
here, we find at T = 2300 K

K D = 2kT

3µ
= 4.0 × 10−19 cm3/s,

[11]

K F =
(

3

4π

)1/2(6kT

ρ

)1/2

V 1/6
0 = 6.3 × 10−10 cm3/s,

and at T = 2600 K

K D = 2kT

3µ
= 1.6 × 10−17 cm3/s,

[12]

K F =
(

3

4π

)1/2(6kT

ρ

)1/2

V 1/6
0 = 6.7 × 10−10 cm3/s,

where V0 is the initial volume of the droplets. The reader should
note that K D is a very strong function of temperature, while
K F is essentially temperature independent. The volume fraction
N∞V0 of droplets is 5e − 7 and the concentration of enclosures
in a droplet is taken to c = 0.2.

Other variables to specify are the initial number of monodis-
perse droplets in the simulations and the initial number of
monodisperse enclosures in each droplet. We denote this pair
by (M, m).

To simulate approximately 100 ms of growth time, it was
necessary to top up our system 10 times to maintain reason-
able statistics. Numerical computations were run for various
sets of (M, m), where M refers to the initial number of the
droplets and m refers to the initial number of enclosures in each
droplet.

The total number of enclosures in our numerical simulation
is equal to M ∗ m, which is approximately 3 × 106. To handle
such large systems, the code stores and deals with the droplets
and their internal state in arrays. In particular, we store all the
enclosures in an array, ui , i = 1, . . . , N , where ui is the volumes
of the enclosures. Then, we define the array for the number of
the enclosures in each droplet, ni , i = 1, . . . , n and the array
for the volume of each droplet Vi , i = 1, . . . , n, where Vi is the
volume of the droplets. Here, n is the number of the droplets
and N is the total number of enclosures. From this information
one can find out which enclosures are contained in a particular
droplet. For example, enclosures in j th droplet have indices from∑ j−1

l=1 nl to
∑ j

l=1 nl . After each coagulation process we sort the
enclosures, ui , and the droplets, Vi , and calculate new values
of ni . With this structure the code allows us to run simulations
with up to 15 million enclosures, on a PC with 256MB RAM
and a Pentium III 900-MHz processor, in a few hours. We would
like to note that for such a large number of particles the CPU
time of sectional models is more favorable, but one needs to
remember the limitations of sectional models for binary aerosol
coagulation.
Before discussing the simulation results, we would like to
make a comment about the use of mean-field equations (in our
ZACHARIAH

coagulation constants) for enclosures. One can argue that the
description of the enclosures on statistical terms makes sense
only if the number of enclosures is sufficiently large. This criti-
cism can be resolved, however, since our system contains a large
number of similar droplets. While the behavior of enclosures in
a single droplet may not be well described statistically, the be-
havior of the enclosures in a large number of similar droplets
can be described statistically. In that sense we consider the most
likely behavior of enclosures in a droplet. We will show later
that the behavior of enclosures in each droplet is similar and the
mean number of enclosures per droplet increases. Moreover, we
would like to note that it would be easy to incorporate a particu-
lar dynamics associated with a small number of particles in MC
simulations.

In Fig. 4 we plot the mean number of enclosures per droplet
(for T = 2300 K), i.e., ntot/Mtot, where ntot is the total number
of enclosures and Mtot is the total number of droplets. Results
are presented for two sets of initial conditions (M, m), where M
refers to the initial number of droplets and m refers to the ini-
tial number of enclosures per droplet. The most obvious result
of the simulation is that the number of enclosures per droplet
relaxes very rapidly from the initial conditions and is followed
by a slow increase. This behavior is similar to that observed in
our previous works (10, 11). In Appendix A we present a simple
model showing that the mean number of enclosures per droplet
increases at rate t1/5, assuming that the enclosure size distribu-
tion is either monodisperse or self-preserving at all times. The
slow increase of the mean number of enclosures per droplet can
also be understood from the following simple scaling argument.
Balancing the characteristic times for enclosure and droplet

FIG. 4. Mean number of the enclosures per droplet (total number of
enclosures/total number of droplets) at T = 2300 K for two values of (M, m),
where M refers to the initial number of droplets and m refers to the initial num-

ber of enclosures per droplet in our simulation. All droplets and enclosures are
initially monodisperse.
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coagulations, we obtain

1

K F N
∼ V̄

K Dn̄
,

where V̄ is the mean droplet volume and n̄ is the mean number
of enclosures per droplet. This balance relationship implies that
n̄ ∼ K Fφ/K D , where φ = N (0)V (0) is the volume fraction of
the droplets. Since K F grows as V̄ 1/6, while K D is independent
of the mean volume growth, the above expression for n̄ implies
that the mean number of enclosures would grow as V̄ 1/6. Further,
assuming that the droplet size distribution is self-preserving (or
monodisperse), then V̄ 1/6 would grow as t1/5 (22).

If we denote ū as the mean volume of the enclosures and V̄
the mean volume of the droplets, then the ratio

ntotū

MtotV̄
= c

is constant in our system at all times. This constant for our
experimental system was approximately c = 0.2. Consequently,

ntot

Mtot
= const

V̄

ū
.

In the absence of the droplets, the enclosures (would now be the
aerosol) coagulate in a free-molecular regime, and their growth
rate is proportional to the growth rate of droplets (note that
the densities of SiO2 and Fe2O3 are close to each other). More
precisely, the growth rate of the enclosures (would now be the
aerosol) is 1/c times the growth rate of the droplets (1/c repre-
sents the ratio of the volume fractions). Thus, ntot

Mtot
is the relative

growth rate of the enclosures due to the presence of the major
phase. We see from Fig. 4 that by introducing the major phase,
SiO2, we have effectively moderated the growth rate of the mi-
nor phase by some 2000 times (after 30 ms)! We also see from
this figure that the asymptotic behavior of the mean number of
enclosures per droplet is independent of the initial conditions of
(M, m). This latter point implies that, in the asymptotic limit,
the aerosol and enclosure growth rate are balanced.

In Fig. 5 we plot the mean number of enclosures per droplet at
the higher temperature 2600 K case. Here, because of the lower
viscosity of the major phase (silica droplet), the moderation rate
is significantly diminished; thus, the coagulation of the enclo-
sures is faster, the average number of enclosures is significantly
lower (<100), and therefore the enclosure average volume will
be larger. Just as before for the lower temperature conditions,
the MC calculations predict the mean number of enclosures per
droplet is independent of the initial conditions of the numeri-
cal simulation. More important perhaps is that the presence of
the major phase can be used as a very significant moderator
to nanoparticle growth with the temperature being the control
variable (through the viscosity of the major phase).
In Fig. 6 we compare the mean number of enclosures per
droplet computed using our MC approach with that calculated
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FIG. 5. Mean number of enclosures per droplet (total number of
enclosures/total number of droplets) at T = 2600 K for two values of (M, m).

in Appendix A. The approach used in the appendix assumes
the enclosures are monodisperse at all times. Note that because
of variations in enclosure sizes in droplets, the mean number of
enclosures per droplet will decrease faster. These results indicate
that even though a simple monodisperse model does not allow
us to analyze the polydisperse nature of our system, it correctly
captures the essence of the long time behavior of the average
properties. In Fig. 7 we plot the mean number of the enclosures
per droplet on a log–log scale. Clearly, the slope of the increase is
1/5 on the log–log scale. Finally, we would like to note that the
mean number of enclosures per droplet will grow also at the rate

FIG. 6. Mean number of enclosures per droplet (total number of

enclosures/total number of droplets) at T = 2300 K compared with our simpli-
fied model.
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FIG. 7. Mean number of enclosures per droplet (total number of
enclosures/total number of droplets) at T = 2300 K compared with our simpli-
fied model on a log–log scale.

1/5 (on a log–log scale) if we assume that both the distribution
of droplets and enclosures in a droplet are self-preserving (see
Appendix A).

We next consider the characteristics of the enclosure size dis-
tribution. In Figs. 8 and 9, we plot the normalized variance,
u2/ū2, of all the enclosures versus time. Here, u2 denotes the
second moment of the enclosure distribution, defined as

u2 = 1∑
i ni

∑
i

ni u
2
i ,
FIG. 8. Normalized second moment (u2/ū2) of the enclosures at T =
2300 K for two values of (M, m).
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FIG. 9. Normalized second moment (u2/ū2) of the enclosures at T =
2600 K for two values of (M, m).

and ū denotes the first moment of the enclosure distribution,
defined as

ū = 1∑
i ni

∑
i

ni ui ,

where ni is the number of the enclosures with volume ui . In
all simulations the normalized variance approaches an asymp-
totic value, implying that the enclosures reach a so-called “self-
preserving” size distribution. In a lower temperatures setting,
T = 2300 K, the normalized variance approaches the asymp-
totic value much faster than at T = 2600 K. This is associated
with the fact that the mean number of enclosures per droplet
is much higher at 2300 K. In the end of this section we will
discuss this issue. The higher temperature 2600 K case (Fig. 9)
also shows some noise at initial times and is associated with the
numerical error in the MC simulation, which is proportional to
1/

√
n, where n is the number of enclosures. The higher tem-

perature case involves a much lower number of enclosures per
droplet (as low as 50) and a correspondingly small total number
of enclosures and therefore more error in the computation.

We next turn our attention to the average volume of enclo-
sures, plotted in Fig. 10 as a function of time at 2300 K. This
quantity is normalized by the initial enclosure volume, 0.05 nm3.
Note that the initial enclosure size depends on the number of par-
ticles in a droplet at t = 0. The MC results show that volume
growth is independent of the initial conditions and are linear
functions of time and with the same dependence expected for
an aerosol undergoing coagulation in a continuum regime (23);
see also Appendix B, [19]. In Fig. 11 we compare the growth

of the average volume of the enclosures at the two different
temperatures. The results clearly indicate that the growth of
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FIG. 10. Average normalized volume of enclosures at T = 2300 K for two
values of (M, m).

enclosures is much slower for the lower temperature case be-
cause of the higher droplet viscosity. Indeed, this is the crucial
result in the whole concept of using a matrix to moderate the
growth of nanoparticles. In this example, only a 300 K change in
temperature results in a several orders of magnitude change in
enclosure volume! Such a change in growth rate could never
have been achieved for a purely coagulating aerosol.

In Figs. 12 and 13, we present the enclosure size distribu-
tion at different times by plotting the dimensionless enclosure
size distribution ψ(η) = n(u,t)ū

n∞ versus the dimensionless volume
η = u/ū, where n∞ is the total number of enclosures. Clearly,
the distributions have already collapsed onto a self-preserving
FIG. 11. Comparison of the average volume of the enclosures at T =
2300 K and T = 2600 K. Note a log scale along the vertical axis.
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FIG. 12. The enclosure size distribution at T = 2300 K. Dimensionless
number density, ψ(η) = n(u,t)ū

n∞ versus dimensionless volume, η = u/ū. The
numerical values of the self-preserving distribution for the Brownian regime
(solid line) is taken from Vemury et al. (24).

form for coagulation in a continuum regime (the numerical
values of ψ(η) are taken from Vemury et al. (24)) at T = 2300 K.
While at 2600 K the enclosure size distribution is clearly nar-
rower. This is associated with a small number of enclosures
per droplet and will be explained at the end of this section.
In Fig. 15 we plot the enclosure size distribution at very large
times to show that the enclosure size distribution approaches

FIG. 13. The enclosure size distribution at T = 2600 K. Dimensionless
number density, ψ(η) = n(u,t)ū

n∞ versus dimensionless volume, η = u/ū. The

numerical values of the self-preserving distribution for the Brownian regime
(solid line) is taken from Vemury et al. (24).
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the self-preserving form for Brownian coagulation. The conver-
gence of the enclosure size distribution to the self-preserving
form for Brownian coagulation depends on the mean number of
enclosures per droplet and will also be discussed in more detail
at the end of this section.

It is clear that if the number of the enclosures per droplet
becomes too small, one (or two) enclosure(s) per droplet, for
example, (this will happen if the temperature is very high, e.g.,
T = 3200 K), then the enclosure size distribution will be very
similar to the droplet size distribution (free molecule) provided
that the total volume of the enclosures in a droplet is the same
for all the droplets. Under such conditions, since the enclosures
grow at the rate of the aerosol, the use of a matrix (major phase)
has no value. This places a requirement on the use of a matrix
that has sufficient viscosity to moderate the enclosure growth
rate.

The numerical results show that the enclosure distribution col-
lapses onto the self-preserving size distribution, which is close
to the Brownian self-preserving size distribution if the mean
number of the enclosures per droplet is large. In Appendix B
we show that if the mean enclosure volumes of each droplet
are approximately the same, then the enclosure size distribu-
tion is self-preserving in each droplet, and the form of the
self-preserving function is the same for all the droplets. Thus,
this self-preserving function has to be the self-preserving func-
tion corresponding to the coagulation kernel of the continuum
regime. In general, the mean enclosure volumes of each droplet
are not the same.

Next, we study the statistics of the mean enclosure volumes
of each droplet. The behavior of this quantity would offer some
keys to the convergence to the self-preserving size distribution
of enclosures at different temperatures. We define the mean en-
closure volume of each droplet in the following way. For each
droplet i with volume Vi , total enclosure volume, Ui , and number
of enclosures, ni , the mean enclosure volumes of each droplet
is defined as ūi = Ui/ni . Note that in, our numerical simula-
tions, Ui = cVi , where c is the same for all droplets. Then,
ūi = cVi/ni .

In Fig. 14 we plot the normalized variance of mean enclosure
volumes of each droplet, ū1, . . . , uM , where M is the number of
droplets (in this case (1000, 2000) is chosen). The normalized
variance is then defined as u2

m/u2
m , where

u2
m = 1∑

i mi

∑
i

mi ū
2
i , um = 1∑

i mi

∑
i

mi ūi ,

where mi is the number of the mean enclosure volumes with
volume ūi . The interesting observation is that the normalized
variance of the mean enclosure volumes of each droplet is quite
sensitive to the temperature and is much smaller if the mean num-
ber of enclosures per droplet is larger, as is the case when the
temperature is low (i.e., internal transport is slow). Indeed, at the

highest temperatures, 3200 K, there is on average only 1–2 enclo-
sures per droplet at a time scale of 1 s; thus, the mean enclosure
ZACHARIAH

FIG. 14. The normalized variance (u2
m/u2

m ) of the mean enclosure volumes
of each droplet at different temperatures.

volumes of each droplet simply track the droplet volumes, i.e.,
reach the self-preserving size distribution corresponding to the
free-molecule regime. At the lowest temperatures (T = 2300 K)
the mean enclosure volumes are essentially equivalent between
droplets. Under these conditions the coagulation of the droplets
does not influence the enclosure size distribution; thus, if the
mean number of the enclosures per droplet is large enough, the
self-preserving form of the enclosure distribution is approxi-
mately the same as that corresponding to coagulation in a contin-
uum regime. Note that at T = 2600 K the normalized variance
of mean enclosure volumes of each droplet eventually will be-
come very close to unity (see discussion in the next paragraph).

The behavior of the normalized variance of mean enclosure
volumes of each droplet can be explained, we believe, in the
following way. At an asymptotic condition, the characteristic
interaction times for the enclosures in each droplet are balanced
with the characteristic coagulation time for the droplets. The
characteristic interaction (i.e., coagulation) time for the enclo-
sures in each droplet Vi is given by

t c
i = Vi

K Dni
[13]

and is constant for all droplets. Since the total enclosure volume
of a droplet with volume Vi is cVi , t c

i can be written as

t c
i = ūi

cK D
,

where ūi is the mean volume of the enclosures of the droplet. So
at an asymptotic limit we expect the mean enclosure volumes
of each droplet to be constant, i.e., the normalized variance to

be equal to unity. However, this characteristic time [13] is only
defined if ni > 1. So if the number of enclosures per droplet
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FIG. 15. The enclosure size distribution at large times for T = 2600 K.
Dimensionless number density, ψ(η) = n(v,t)v̄

n∞ versus dimensionless volume,
η = v/v̄. The numerical values of the self-preserving distribution for the
Brownian regime (solid line) is taken from Vemury et al. (24). The mean num-
ber of enclosures per droplet at these time instants are n̄(0.03 s) = 50, n̄(3 s) =
100, n̄(1.2e + 3s) = 1200, and n̄(1e + 5 s) = 2000.

is close to unity, the characteristic enclosure coagulation times
(defined in [13]) in each droplet will in general not be equal to
each other and we need to take account of the variation in number
of enclosures per droplets. If this variance is large, then there are
many droplets with a small number (close to unity) of enclosures
when the mean number of enclosures per droplet is also small.
This is the case (based on our numerical observations, which
will not be presented here) for T = 2600 K up to 100 ms. In
Fig. 15 we present the enclosure size distribution at large times
for T = 2600 K. The enclosure size distribution approaches the
Brownian self-preserving size distribution, albeit very slowly.
Note that the mean number of enclosures per droplet plays an
important role in this convergence. As we see from Fig. 15, if the
mean number of enclosures becomes larger than a few thousand,
then the enclosure size distribution is approximately the same as
the self-preserving form of Brownian coagulation. However, the
mean number of enclosures per droplet grows slowly (as t1/5);
thus, it takes a long time for the mean number of enclosures to
reach a few thousand at high temperatures.

6. CONCLUSIONS

In this paper we have presented a hybrid Monte Carlo tech-
nique to simulate the simultaneous coagulation and kineti-
cally controlled phase segregation of two-component immisci-
ble aerosols. The hybrid MC combines two MC simulations. One
simulates the coagulation of droplets and the other simulates the

interaction between enclosures, based on a mass-transfer lim-
ited growth. The method was applied to the SiO2/Fe2O3, binary
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system that we have studied in our previous work (10, 11). The
hybrid MC approach allows us to compute the average prop-
erties of our system, including mean number of enclosures per
droplet, average enclosure volume, and the normalized second
moment of the enclosures. The results indicate that the asymp-
totic behavior is independent of the initial conditions of our
numerical simulations and indicates that our MC approach is
robust.

The mean number of enclosures per droplet is a measure of
the relative growth rate of the enclosures due to the presence of
the droplets. The computations show that this quantity increases
at a slow rate and that the asymptotic behavior is independent
of initial conditions with regard to initial droplet and enclosure
size. Temperature, on the other hand, is an extremely important
variable since it has a very significant impact on the intradroplet
transport process while it is relatively insensitive to the droplet
coagulation rate. The computations on the statistics of enclo-
sure size distribution indicate that the enclosure size distribution
reaches a self-preserving condition at large times, which is very
close to the self-preserving distribution for Brownian coagula-
tion, if the mean number of enclosures per droplet is large (i.e.,
that is, if the temperature is not high or the viscosity of the liq-
uid droplet is not too low). Higher temperatures require longer
times for the enclosure distribution to reach the self-preserving
condition.

Using our MC approach, we also study the mean enclosure
volumes of each droplet and their distribution. We show that
the normalized variance of the mean enclosure volumes of each
droplet is very small if the mean number of enclosures per droplet
is high. This shows that the size distribution of mean enclosure
volumes of each droplet is not correlated to the size distribution
of the droplets at low temperatures (or when the mean number
of the enclosures per droplet is high). We note that the latter
statistics are only possible with a model that does not assume
any a priori enclosure distribution.

One of the main advantages of our MC approach over the
sectional models is that the MC framework introduced here is
amenable to the inclusion of additional phenomena including the
addition of new mass to the system through nucleation as well
as the imposition of thermodynamic constraints, in addition to
the kinetic ones discussed above for both droplet and enclosure
growth.

Finally, the results indicate that the use of a major/minor
phase combination may be a useful strategy in controlling the
growth rate of nanoparticles in the minor phase by controlling
the nanoparticle encounter frequency. We noted for example that
the encounter frequency for our silica/iron oxide system the iron
oxide growth could be moderated (decreased) under experimen-
tal conditions.

APPENDIX A: MONODISPERSE MODEL
Assume that the enclosure coagulation in a droplet of volume
V satisfies
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d(n/V )

dt
= −2K D(n/V )2, [14]

where n is the number of enclosures in the droplet. Equation [14]
holds if the enclosures are monodisperse or have self-preserving
size distribution. In the latter case K D should be replaced by
1.075 K D (22). Integrating [14],

1

n(t)
= 1

n(0)
+ 2

K D

V
t. [15]

Further assume that the total volume of the enclosures in each
droplet is cV , where c is the same for all the droplets. Then,
multiplying [15] by cV , we obtain

ū(t) = ū(0) + 2cK Dt, [16]

where ū(t) is the mean enclosure volume in a droplet at time
instant t . [16] indicates that the growth of mean volume of the en-
closures is independent of droplet volume. Further, we note that
a collision of two droplets with the equal mean enclosure vo-
lume results in a droplet whose mean enclosure volume is the
same as those prior to the collision. Thus, if we assume that
initially all enclosures are monodisperse with the same volume,
then the mean volume of the enclosures (assuming them to be
monodisperse at later times) will remain the same for all droplets.
From here the number of enclosures in a droplet of volume V is
given by

nV (t) = cV

ū(t)
.

Then, the mean number of the enclosures per droplet is defined
as

n̄ = cV̄

ū(t)
. [17]

[17] is also true if the enclosure distribution in the droplet is
self-preserving. Indeed, using Appendix B, we can show that
if the enclosure size distribution is self-preserving and if the
mean volume of the enclosures of each droplet is the same, then
the enclosure size distributions remain self-preserving; i.e., the
total number of enclosures in a droplet of volume V satisfies
[14]. Then, the mean enclosure volume in each droplet will be
equal at later times according to [15]. This fact demonstrates
the validity of the simple model when the size distribution of
enclosures is self-preserving.

To find an expression for V̄ (mean droplet volume growth),
we can assume that the droplets have self-preserving size distri-
bution. Then, following (22, Sect. 7),

( )1/6( )1/2
d N (t)

dt
= −α

2

3

4π

6kT

ρ
φ1/6 N 11/6(t), [18]
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where α ≈ 6.67 and φ = N (0)V (0) is the volume fraction. From
[18] one can easily find the expression for the volume growth,
and consequently the expression for the mean number of enclo-
sures per droplet

n̄ = c

(
V 5/6(0) + 6/5K F

0 φt
)6/5

ū(0) + 2cK Dt
,

where K F
0 = α

2 ( 3
4π

)1/6( 6kT
ρ

)1/2 φ1/6. Note that as t → ∞,

n̄(t) ∼ t1/5.

APPENDIX B: SELF-PRESERVING DISTRIBUTION
OF THE ENCLOSURES

In this appendix we show that if the distribution of the enclo-
sures is self-preserving in each droplet and if the mean volume
of the enclosures in each droplet is the same at some time t0,
then the enclosure distribution in each droplet will remain self-
preserving and their mean volume will be the same for all the
droplets at all times t > t0. This follows from the following three
statements:

(1) As a result of the coagulation of two droplets, the mean
volume of the enclosures in the resulting droplet does not change
if before the collision the mean volume of the enclosures in each
droplet was the same.

(2) The enclosure coagulation in each droplet changes the
mean volume in the same way for all the droplets if the enclosure
distribution in the droplets is self-preserving.

If the distribution is self preserving, we have (22)

n(v, t) = ψ(η)
n∞

v̄
,

where η = v/v̄. The function ψ(η) is the same for all the
droplets. The total number of enclosures in each droplet is de-
fined by

dn∞

dt
= − 2kT

3µV
(1 + ab)(n∞)2,

where a = ∫ ∞
0 η1/3ψ(η) and b = ∫ ∞

0 η−1/3ψ(η) and V is the
volume of the droplet. Or

dn∞

dt
= −σ B

V
(n∞)2,

where σ B = 2kT
3µ

(1 + ab) is the same constant for all the
droplets. Solving this equation,

1

n∞(t)
= 1

n∞(0)
+ σ B

V
t.
Multiplying this equation by the total volume of the enclosures,
which is cV , where c is the same for all the droplets, we have
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v(t) = v(0) + cσ Bt. [19]

Thus, if v(0) is the same for all the droplets, then v(t) also
remains the same.

(3) The distribution of the enclosures during the collision of
the droplets will remain self-preserving.

Assume two droplets with enclosure distribution n1(v, t) and
n2(v, t) collide. Since the enclosure distribution in both droplets
is self-preserving and the mean volume of the enclosures in the
droplets is equal, we have

n1(v, t) = ψ(n)
N∞

1 (t)

v̄
, n2(v, t) = ψ(η)

N∞
2 (t)

v̄
.

The resulting enclosure distribution is

n(v, t) = n1(v, t) + n2(v, t) = ψ(η)
N∞(t)

v̄
,

where N∞(t) = N∞
1 (t) + N∞

2 (t). Thus, the resulting distribu-
tion is the self-preserving.
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