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Minneapolis, Minnesota

In this article, a simple numerical method to solve the gen-
eral dynamic equation (GDE) has been described and the soft-
ware made available. The model solution described is suitable for
problems involving gas-to-particle conversion due to supersatu-
ration, coagulation, and surface growth of particles via evapora-
tion/condensation of monomers. The model is based on simplifying
the sectional approach to discretizing the particle size distribu-
tion with a nodal form. The GDE developed here is an extension
of the coagulation equation solution method developed by Kari
Lehtinen, wherein particles exist only at nodes, as opposed to con-
tinuous bins in the sectional method. The results have been tested
by comparison where simple analytical solutions are available, and
are shown to be in excellent agreement. By example we apply the
model to the formation and growth of Aluminum particles. The
important features of the model are that it is simple to compre-
hend; the software, which we call nodal GDE solver (NGDE), is
relatively compact; and the code is well documented internally, so
that users may apply it to their specific needs or make modifications
as required. The C files mentioned in this article are available on-
line at http://taylorandfrancis.metapress.com/openurl.asp?genre=
journal&issn=0278-6826. To access this file, click on the link for this
issue, then select this article. In order to access the full article on-
line, you must either have an institutional subscription or a member
subscription accessed through www.aaar.org.

INTRODUCTION
The general dynamic equation (GDE) is the central conti-

nuity equation for aerosols, and its solution as such has re-
ceived considerable attention. Because the GDE is a nonlin-
ear, partial integro-differential equation, analytical solutions are
available for only a few special cases (Gelbard and Seinfeld
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1979; Peterson et al. 1978). Analytical studies on coalescence
for different schemes of collision frequencies have been done by
Scott (1968). Several approaches to solve the GDE numerically
have been developed over the years. The most employed gen-
eral method and its variants for simulating aerosol dynamics is
based on dividing the particle size domain into sections as devel-
oped by Gelbard et al. (1980). The “J-Space” method (Suck and
Brock 1979) also produces accurate results; however, the method
may cause problems on inclusion of condensation (Williams and
Loyalka 1991). For different representations of the size distribu-
tion function, simulations of coagulation and diffusion-limited
condensation problems have been compared by Seigneur et al.
(1986). Such problems involving coagulation and condensation
have also been solved using hybrid (moving and stationary) size
grid approach (Jacobson and Turco 1995). A widely used alter-
native approach has been the method of moments (e.g., Pratisinis
1988), which approximates the size distribution by a unimodal
lognormal function.

In this article, a simple approach has been proposed to solve
the GDE for nonreactive systems which was developed as part
of a graduate course project. The purpose of this article is not to
compare the method’s advantage over the many schemes avail-
able, but rather to indicate the simplicity of the algorithm and
to offer the NGDE software for use by others. Essentially, it
is a modification of the sectional method developed by Gelbard
(1980) and an extension of a coagulation nodal method by
Lehtinen and Zachariah (2001). In the sectional method the par-
ticle size domain is discretized into finite-sized sections. In the
nodal method presented here, the finite-sized sections of the sec-
tional model have been reduced to discrete points called “nodes”
on the size domain. It is assumed that particles exist only at these
nodes, which are evenly spaced on a logarithmic size scale. This
assumption simplifies the computation by limiting the number
of parameters.

In the next section, the development of the model is shown.
The underlying assumptions of the model are stated and the gov-
erning equations for the same are derived. The following section
discusses the specific aerosol system, aluminum, for which the
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model has been tested. Results for the specific problem have been
presented and analyzed and a comparison with other approaches
has been conducted to evaluate the method. In addition to veri-
fying the reliability of results, the inherent errors introduced due
to size splitting of particles into “zero-width” nodes have been
examined in the final section.

MODEL DEVELOPMENT
Based on the sectional model approach a nodal form of the

size distribution has been assumed wherein the total volume
range for the aerosol is divided into nodes as opposed to dis-
crete sections. In other words, the bins of finite width in the
sectional model have been squeezed to zero width nodes in the
nodal method, with the constraint that particles reside only at
the nodes. Generally, in an aerosol system the particle sizes
range from ∼1 nm to about 10 µm. On the volume scale this
size range corresponds to ∼10−27 m3 to ∼10−15 m3. To cover
the 12 orders of magnitude for the volume range, the nodes are
spaced linearly (with equal spacing) on a logarithmic scale. We
have used a geometric spacing factor of 2 for the logarithmic vol-
ume scale. Using a geometric spacing factor of less than 2 would
increase the accuracy; however, computational requirements in-
crease substantially, with only a small increase in accuracy. With
the above geometric factor, there are 10 size nodes per order of
magnitude in the particle diameter space. In order to cover the
above particle size range, 40 size nodes are required. Figure 1
illustrates the division of nodes on a logarithmic scale.

General Dynamic Equation
In writing the population balance, we limit the phenomena

of interest to nucleation, coagulation, and surface growth.

Figure 1. Illustration of node spacing on a logarithmic volume
space where q is the geometric spacing factor, which in the
present case is 2. The heights of the nodes correspond to the
volume of the node (not drawn to scale).

Thus, the GDE is given by

dNk

dt
= dNk

dt

∣∣∣∣
coag

+ dNk

dt

∣∣∣∣
nucl

+ dNk

dt

∣∣∣∣
evap/cond

, [1]

where Nk is the number concentration of particles at node k.

Nucleation
Gas-to-particle conversion occurs due to condensation of su-

persaturated vapor, and while several theories have been de-
veloped to model nucleation of particles, the model developed
here uses classical homogenous nucleation theory with the self-
consistent correction (SCC) proposed by Girshick and Chiu
(1990):

Jk = n2
s Sv1

(
2σ

πm1

)0.5

exp

(
θ − 4θ3

27 log2 S

)
. [2]

Nucleation leads to the production of particles of critical size
(v∗), which may happen to occur at a node or more likely between
two nodes. Since the particles reside only at the nodes, particles
nucleated between two nodes are put in the next higher node.
Conservation of particle volume is accounted for by multiplying
the nucleated volume by a size operator ξk given below. This
process of putting the nucleated particles at the node just larger
than k∗ is shown in Figure 2. Note that node 1 corresponds to the
monomer units and nodes 2 through 40 are considered clusters,
of which the ones that are larger than k∗ are termed “particles”.

ξk =




v∗

vk
; if vk−1 ≤ v∗ ≤ vk,

v∗

v2
; if v∗ ≤ v1,

0; otherwise.

[3]

Thus the population change due to nucleation is

dNk

dt

∣∣∣∣
nucl

= Jk(t)ξk . [4]

Coagulation
Collision of two particles larger than the critical size node

k∗ is termed “coagulation.” In the development of this model
free molecular regime has been assumed for the calculation of
collision frequency function. Although most of the nodes reside
in the free molecular regime, there are particles that reside in
the transition regime as well (dp ∼ λ). It is important to note
that mean free path of a carrier gas molecule at temperature
range being studied here is on the order of a fraction of a µm.
Also, growth of particles due to condensation and evaporation
processes have much smaller characteristic time as compared
to coagulation, so as the particles grow coagulation has little
role to play. The comparative contribution of coagulation and
growth has been described in the results section (Figure 9). The
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Figure 2. Illustration of the GDE algorithm. Nucleation occurs at the node just larger than the critical cluster size. k∗ moves on
the volume space due to changes in saturation ratio. Splitting of particles formed from coagulation of particles of sizes vi and v j

into nodes adjacent to vi + v j is also shown.

collision frequency function β(vi , v j ) for collision of particles
of volumes vi and v j is given by (Friedlander 2000)

β(vi , v j ) =
(

3

4π

)1/6(6kT

ρp

)1/2( 1

vi
+ 1

v j

)1/2(
v

1/3
i + v

1/3
j

)2
.

[5]

The above assumption holds good for most cases; however, for
a more accurate calculation on collision rates one can use Fuchs
form of collision coefficient (Seinfeld and Pandis 1998), and
such a provision is available in the NGDE program. The rate of
change of particle size distribution (PSD) due to coagulation is
given by a modified Smoluchowski equation:

dNk

dt

∣∣∣∣
coag

= 1

2

∑
i=2
j=2

χi jkβi,j Ni N j − Nk

∑
i=2

βi,k Ni . [6]

Particles of volume vi and v j collide, resulting in a particle of
volume vi + v j . If this volume falls between two nodes, the
new particle is split into adjacent nodes (Figure 2) under the
constraint of mass conservation. Thus we define a size-splitting
operator χi jk as follows:

χi jk =




vk+1 − (vi + v j )

vk+1 − vk
; if vk ≤ vi + v j ≤ vk+1,

(vi + v j ) − vk−1

vk − vk−1
; if vk−1 ≤ vi + v j ≤ vk,

0; otherwise.

[7]

Surface Growth
Particles either grow due to condensation of monomers or

shrink due to evaporation of monomers from the surface. The
driving force for condensation or evaporation depends on the dif-

ference between the vapor pressure of monomer and the Kelvin
effect adjusted saturation vapor pressure for the particular par-
ticle size of interest.

A particle may be added to a node either due to condensation
of monomers on smaller particles or evaporation from larger
particles. Likewise, a particle may be removed from a node due
to either its evaporation to a smaller size node or the conden-
sation of monomers to form a larger particle. The change in
PSD due to evaporation or condensation of monomers can be
mathematically expressed as

dNk

dt

∣∣∣∣
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vk−vk−1
β1,k−1
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(
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)
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1,k+1,
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(
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1,k

)
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1,k,
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β1,k

(
N1−N s

1,k

)
Nk if N1<N s

1,k .

[8]

Monomer Balance
Monomers are involved in nucleation and surface growth

of particles. A monomer balance is necessary to account for
monomer concentration changes due to nucleation, condensa-
tion, and evaporation:

dN1

dt
= dN1

dt

∣∣∣∣
nucl

+ dN1

dt

∣∣∣∣
evap/cond

, [9]



NUMERICAL ALGORITHM AND SOFTWARE 895

where

dN1
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= −Jkk∗, [10]
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[11]

RESULTS AND DISCUSSION
By way of demonstrating the use of the model we apply it to

the problem of aluminum particle formation and growth from a
vapor at 1773 K as it is passed into a condenser, with a cooling
rate of 1000 K/s. The problem conditions for these tests were
adapted from an earlier work by Panda and Pratsinis (1995) on
the modeling of evaporation-condensation of aluminum in an
aerosol flow reactor. Below we test each of the three modules of
the GDE and present the unified model. To illustrate the solution
of the example problem, the free molecular regime (dp � λ)
has been assumed for the calculation of the collision frequency
function.

Coagulation
We evaluate the accuracy of the coagulation module against

Friedlander and Wang’s (1966) similarity transformation for the
size distribution function. Friedlander showed that for a purely
coagulating aerosol the resulting particle size distribution (PSD)
becomes asymptotically (at long time) independent of the ini-
tial conditions. These asymptotic distributions are independent
of time when plotted in a nondimensional form as shown by
Friedlander (2000) and are termed as “self-preserving distribu-
tions”(SPD). We compare our results with those obtained by
the discrete-sectional method of Vemury et al. (1994) using an
initially monodisperse aerosol. As seen in Figure 3, we find
very good agreement between the SPD computed by the two
techniques.

Nucleation and Coagulation
The variation in size distribution with time with just the nu-

cleation and coagulation modules of the GDE turned on is pre-
sented in Figure 4. The distribution function evolves into an
approximately lognormal form. The node at which nucleation
of particles would occur is determined by the critical cluster size,
k∗. Figure 5 shows the variation of k∗ with time. As the system
cools down, k∗ shifts towards smaller nodes and the number of
particles added at a node due to nucleation depends on the nucle-
ation rate. Figure 4 shows the evolution of the size distribution

Figure 3. Self-preserving particle size distribution in the free
molecular regime, compared with values calculated by a discrete
sectional method (Vemury et al. 1994).

with time, and it appears that particles coagulate to increase in
size while the number concentration of particles in the smaller
sized nodes falls. However, the high concentration of particles
that we see at the still smaller nodes is due to nucleation. At
long times, k∗ is very small and particles are continuously being
added in the smallest node due to nucleation.

Surface Growth
As normally formulated, the critical particle volume v∗ is the

particle volume at which nucleation occurs. In the present model,
it is modified to reside at the next larger node as it is unlikely
that v∗ would happen to occur at an existing node. Particles

Figure 4. Evolution of size distribution due to nucleation and
coagulation.
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Figure 5. Variation of critical cluster size (k∗) with time as the
system cools.

with volume less than v∗ have a tendency to evaporate, whereas
those with size larger than v∗ tend to grow. To test the model for
pure surface growth, a monodisperse aerosol of concentration
1010 m−3 was added at node 25 and the change in PSD with time
is shown in Figure 6. The monomer concentration was fixed to
test the growth module. At later times as surface growth occurs
particles move into adjacent nodes depending on the critical size
v∗ which determines at each time step whether the particles at

Figure 6. Pure surface growth causes a shift in PSD. Size dis-
tribution broadens with time due to size splitting of particles into
adjacent nodes.

a particular node will grow or evaporate. In our test problem
shown in Figure 6 particle growth is observed because, as the
system cools, k∗ decreases.

The Complete GDE
The model was finally tested for the complete GDE. In this

model, the system has been restricted to a size range from the
0.3 nm to 3.25 µm. Though the probability of collision of large
particles is very low, coagulation may still lead to formation of
a few particles beyond the largest node. In order to account for
the mass conservation, these particles are put into the largest
node. However, it is important to note that the number of such
particles is small enough not to affect the PSD.

The PSD obtained from the solution of the complete GDE
is shown in Figure 7, while Figure 8 shows the variation in the
nucleation rate Jk and saturation ratio S. For the conditions here,
the nucleation rate peaks at about 0.14 s. Figures 7–9 are closely
correlated. Figure 7 shows the burst of new particles, which
corresponds to the peak in the nucleation rate. Nucleation of
particles occurs at larger nodes initially, so we do not see any
particles in the smaller nodes (nodes smaller than 8). However,
as k∗ moves towards smaller nodes, at later times the smaller
nodes also get populated. Thereafter the PSD is shaped by coag-
ulation and surface growth processes, which are slow compared
to nucleation. The particle mean diameter presented in Figure 9
also increases after the initial nucleation burst (Figure 8). Recall
that the node at which nucleation occurs is determined by the
critical cluster size k∗, the variation of which is similar to that
shown in Figure 5. As the particles are created, the mean diame-
ter increases due to coagulation and surface growth. The flatten-
ing of the particle mean diameter curve corresponds to slower

Figure 7. Variation of size distribution with time for the
complete GDE.
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Figure 8. Variation of nucleation rate and saturation ratio with
time.

growth, dominated by heterogeneous nucleation. Figure 9 also
shows the variation of total number concentration of particles
with time. We notice that after about 0.15 s the number concen-
tration is essentially constant, implying that new particle forma-
tion has ceased. Particle coagulation will decrease the number
concentration; however, at the number densities produced here
the characteristic half-life due to coagulation is on the order of
minutes.

ERROR ANALYSIS
The size-splitting approach incorporates a discrete nodal

structure for the volume space, which inherently introduces er-
rors in the estimation of the distribution function. Agreement

Figure 9. Variation of mean diameter, number concentration,
and total particle volume with time.

Figure 10. Comparison of mean diameters from the nodal
solution and from the heterogeneous growth equation.

of the self-preserving distribution obtained from the model with
the similarity solution of Friedlander validated the coagulation
module. The effect of size splitting on nucleation is minimal,
since the nucleation time scales are small (compared to surface
growth) and thus errors do not accumulate over time. The error
introduced due to surface growth process arising from size split-
ting was estimated by comparing the mean diameter predicted
by the model with that obtained from the heterogeneous growth
law (Friedlander 2000) given by

dv

dt
= πd2

pvm(p1 − pd )

(2πmkT )1/2
. [12]

The nucleation and coagulation modules of the model were
turned off and the growth of a monodisperse aerosol was ob-
served with time with 1010 particles/m3 in node 20 (25 nm). The
mean diameters (analytical and model) and the relative error
are plotted in Figure 10. It is obvious that an initially monodis-
perse aerosol should remain monodisperse, as growth of all the
particles occurs uniformly. However, we observe that an ini-
tially monodisperse aerosol becomes polydisperse, which is a
direct consequence of size splitting and is thus a drawback of
the nodal method. The geometric standard deviation (GSD) of
the size distribution obtained from the nodal method has also
been plotted in Figure 10. Note that the GSD of size distribution
obtained from the analytical solution will be unity, since it al-
ways remains monodisperse. Using a larger number of nodes in
the simulation can further reduce these deviations. It is also clear
that the error increases with an increase in the mean diameter
due to surface growth of particles. However, as the monomers
deplete the growth process becomes less intense, resulting in
flattening of the mean diameter curve and consequently limiting
the error. A similar calculation done for 1020 particles/m3 pre-
dicts maximum errors on the order of 0.1%. We see that with
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an increase in the volume loading of aerosol (increase in num-
ber concentration of particles), the error is reduced for a given
monomer loading. The number concentration of particles in the
aerosol system considered here (and in general) is of order 1010

particles/m3. Thus, the maximum error that can be introduced
due to size splitting should not exceed ∼15%. However, repeated
cycles of subsequent condensation and evaporation may cause
the errors to accumulate. In such a case, larger number of nodes
should be used to obtain more accurate results.

CONCLUSIONS
In this article, we have presented a simple numerical scheme

to solve the GDE for problems involving classical nucleation,
surface growth/evaporation, and coagulation. The algorithm and
software were originally developed as part of a graduate course
in Aerosol Dynamics. The methodology approximates the parti-
cle size distribution to a few nodes by introducing size-splitting
operators. Examples for the growth of aluminum particles from
the vapor were presented. The results have been compared with
other models and show excellent agreement. The software
NGDE should be readily usable and adaptable to other users’
needs or as a teaching tool.

NOMENCLATURE
Jk Nucleation rate, m−3 s−1

kb Boltzmann constant, J/K
m1 Mass of a monomer unit, Kg
ns Number concentration of monomers at saturation, m−3

Nk/Vk Number concentration/volume of particles at the kth
node, m−3/m3

N s
1,k Number concentration of monomers over a k sized par-

ticle at saturation, m−3

N∞ Total number concentration of particles, m−3

s1 Surface area of a monomer unit, m2

S Saturation ratio
T Temperature, K
v∗ Volume of the critical cluster size, m3

v1 Volume of a monomer unit, m3

Greek Letters
θ Nondimensional surface tension, θ = s1σ

kb T
ρp Mass density of particle, kg/m3

σ Surface tension, N/m
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APPENDIX
The numerical algorithm proposed in this article has been

implemented in C. The example problem is specific for a growth
of aluminum aerosol by the evaporation-condensation method;
however, the software is designed to allow the user to apply it
to other systems where property data such as saturation vapor
pressures and surface tension are known. The program code
performs four main types of calculations: (1) pure coagulation,
(2) coupled nucleation and coagulation, (3) pure surface growth,
and (4) unified GDE containing all of the above.

The program execution consists of the user inputting to the
input file the necessary data about the aerosol material properties
and the process conditions. The output can be either viewed on
the console or directed to a file for storage.

The source code for the program has a modular structure.
Each section of the code is independent of other sections. The
source is well commented and a list of variable names and their
units are documented within the code to allow the user to make
customized changes.

The entire NGDE package provided consists of the source
code in C, an instruction file readme.txt, and the sample in-
put files for the example problem discussed in the article. The
electronic version of the package is available for download (see
abstract).


