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Abstract

In this paper we propose a Monte-Carlo method for the simulation of the simultaneous nucleation,
coagulation and phase segregation of an immiscible two-component binary aerosol. The model is intended
to qualitatively model our prior studies of the synthesis of mixed metal oxides for which phase segregated
domains have been observed in molten nanodroplets. Our new approach generalizes our previous approach
(J. Colloid Interface Sci., in press) by incorporating nucleation in addition to coagulation and phase segre-
gation into the method. The nucleation is taken into account using a hierarchy of computational volumes
represented in the simulation.
Our attempts to model only the coagulation of heterogeneous aerosols using basic statistics of their internal

state (J. Aerosol Sci., to appear; Chem. Eng. Sci. 56 (2001) 5763; J. Nanoparticle Res., in press) introduced
some limitations. Using Monte-Carlo approaches, on the other hand, we can model the system of heterogeneous
aerosols without any a priori assumption.
The Monte-Carlo results show that the growth of the minor phase can be moderated quite dramatically by

small changes in system temperature, which e<ectively serves to change the viscosity of the major phase and
therefore the Brownian transport properties of the minor phase.
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Fig. 1. Schematic description of multi-component aerosol formation.

1. Introduction

The studies employing more than one component aerosol assume that the aerosol is a homogeneous
mixture of all the multi-component constituents. On the other hand, there is no a priori reason
to assume, this should be the case, and given appropriate thermodynamic and kinetic properties
one could expect phase segregated aerosols. In particular, we have observed in several cases that
multi-component aerosols can be formed with clearly distinct phases. One of our main goals in this
research is to study the evolution of the internal state of such aerosol droplets. For example, we
have conducted studies on the formation of binary metal oxide systems with application to removal
of heavy metals (Biswas, Yang, & Zachariah, 1998; Biswas & Zachariah, 1997) as well as the
formation of materials with novel and interesting properties (Ehrman, Friedlander, & Zachariah,
1998; Ehrman, Aquino-Class, & Zachariah, 1999a; Ehrman, Friedlander, & Zachariah, 1999b).

Our initial success in growing interesting microstructures (Zachariah, Aquino-Class, Shull, & Steel,
1995) indicated that further research into the mechanistic aspects of the growth was warranted.

Based on experimental and computational studies we believe that given that appropriate thermo-
dynamic conditions are present, phase segregation will take place on the time scale of the formation
and growth process if at least the major phase is in a liquid state (McMillin, Biswas, & Zachariah,
1996; Biswas, Wu, Zachariah, & McMillen, 1997; Zachariah, Shull, McMillin, & Biswas, 1996).

A schematic description of formation of multi-component heterogeneous aerosols is shown in
Fig. 1. We have grown such aerosols from mixtures of liquid metal oxides and metal/salt mixtures
(Ehrman et al., 1999a, b; Ehrman et al., 1998; Zachariah et al., 1995; Biswas et al., 1997) gen-
erated from gas-phase precursors injected into a high-temperature Iame. For example, to form a
iron oxide/silica nanoparticle with phase segregated domains we injected iron carbonyl and hexa-
methyl disioxane into a methane–oxygen–nitrogen Iame. The iron carbonyl vapors enter the Iame
region, decompose, and oxidized to form iron oxide vapors. Based on known kinetics we have been
able to reasonably match the experimentally determined vapor-phase concentration of Fe2O3 with
a Jrst-order kinetic process in the presence of excess oxygen. Similarly, the oxidation of hexa-
methyl disilixane is described by a Jrst-order process in the presence of excess oxygen (Biswas
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et al., 1997). These vapors then nucleate to form the oxide particles. Due to the low vapor pressures
of the resultant oxides, classical descriptions of the nucleation phenomena indicate that there is no
thermodynamic barrier to particle formation, and the process of nucleation can be describe by the
kinetics of polymerization.

In the course of this paper we shall use the terms minor phase and enclosure interchangeable to
refer to the component within each aerosol droplet, and droplet or aerosol when referring to the
particles which do not contain the enclosures. Following our previous works we will assume that
the growth of the enclosures takes place due to Brownian interception and the droplets undergo free
molecule coagulation. The temporal evolution of the nucleation of aerosols and their coagulation is
schematically depicted in Fig. 1. Because our experimental studies were all undertaken when both
components were in the molten state we have only observed spherical droplets for both the major
and minor phase, which also justiJes the use of an instantaneous coalescence assumption in our
model.

In our previous work (Struchtrup, Luskin, & Zachariah, 2001; Efendiev, Luskin, Struchtrup, &
Zachariah, 2002) a 2-D sectional model was developed to account for the basic statistics of the
enclosures inside each droplet, but did not take into account the formation of new particulate material
via nucleation. In addition, the description of the enclosure populations inside a droplet introduces
limitations because one, in general, cannot describe the evolution of the basic statistics of particle
size distribution without an a priori assumption. More recently we developed a hybrid Monte-Carlo
method to describe coagulation and phase separation, but not nucleation. This model extends that
work to include nucleation e<ects (Efendiev & Zachariah, 2002).

Monte-Carlo (MC) methods have the advantage that multi-scale and time phenomena can be
simultaneously solved without the requirement of a single unifying governing multi-variate equation.
Moreover, additional physical e<ects can be introduced in Monte-Carlo framework often easily. In
the simulation of heterogeneous aerosols Monte-Carlo methods are also attractive to us because they
do not require any a priori assumptions about the enclosure distribution in each droplet.

Our approach combines two MC simulations. One simulates the coagulation of the droplets and
the other simulates the interaction between the enclosures. The nucleation is taken into account by
introducing a hierarchy of computational volumes represented in the simulation. Using the hierar-
chical structure of our approach one can handle large and small number of particles by adjusting
the volume represented in the simulation. This procedure is necessary because of the very large
swings in number concentration as a result of the kinetics of monomer generation occurring in such
systems.

The Monte-Carlo model developed in the paper is applied to the binary SiO2=Fe2O3 system,
where SiO2 in considered the major phase and Fe2O3 the minor phase (Ehrman et al., 1999a,b)
Observationally (Fig. 2) what we seen when sampling from the Iame and imaging with TEM is
particles with iron oxide enclosures embedded in silica nanoparticles. Furthermore, we notice that
with increasing residence time the enclosures grow in size and decrease in number concentration.
Recall that under the conditions of growth both phases are in a liquid state (high-temperature growth)
and that thermodynamically both phases are immiscible.

Our goal is to determine the distribution of droplet volumes and the internal state of the droplet
as a function of time, and the e<ect of the nucleation on the internal state of the particles. Using
our Monte-Carlo approach we study di<erent characteristics of our system depending on monomer
production rate, temperature, etc.
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Fig. 2. Evolution of the aerosol (SiO2) and minor phase (Fe2O3) during the growth of SiO2=Fe2O3 nanocomposites.

In the next section we address the diKculties associated with modeling the kinematics of het-
erogeneous particles using macro-scale quantities, such as number density functions. Section 3 is
devoted to the description of hierarchical hybrid Monte-Carlo approach and Section 4 its actual
implementation. The simulation results are presented in Section 5.

2. Mathematical modeling

The general dynamic equation for a gas to particle conversion in the free-molecule regime is given
by Friedlander (2000)

@N (t; V )
@t

+
@(GN (V; t))

@V
− I ′(V ∗)	(V − V ∗)

=
1
2

∫ V

0
KF(U; V − U )N (t; U )N (t; V − U ) dU − N (t; V )

∫ ∞

0
KF(V;U )N (t; U ) dU:

The Jrst term on the left-hand side is the rate of change of particle size distribution function in
the particle volume V to V + dV , the second term on the left-hand side accounts for the e<ect of
condensation at rate G, and the third term on the left-hand side describes the formation of a new
particle of critical volume V ∗ at rate I ′. The terms on the right-hand side account for the e<ect of
free-molecule coagulation.

In a heterogeneous droplet of volume V we assume the transport within the droplet is limited
to Brownian coagulation. Denoting nV (u; t) du as the number of enclosures with volume between u
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and u + du in the droplet of volume V , Brownian dynamics of the enclosure population obeys the
following equation:

dnV (t; v)
dt

=
1
2V

∫ v

0
KD(u; v− u)nV (t; u)nV (t; v− u) du− 1

V
nV (t; v)

∫ ∞

0
KD(v; u)nV (t; u) du: (1)

Note that this equation only describes the coagulation in a droplet and does not include addition
of enclosures due to coagulation of enclosures with droplets and coagulation of droplets with other
droplets.

For completeness we write the collision kernels for the free-molecule regime coagulation as
given by

KF(U; V ) =
(

3
4�

)1=6 (6kT
�

)1=2 ( 1
U

+
1
V

)1=2

(U 1=3 + V 1=3)2 (2)

and for the Brownian regime is given by

KD(u; v) =
2kT
3�

(u1=3 + v1=3)
(

1
u1=3

+
1

v1=3

)
: (3)

Here k denotes Boltzmann’s constant, T is the temperature, � is the viscosity of the medium com-
prising the droplets and � is the density of droplets.

The model describing nucleation and coagulation of heterogeneous aerosols will be given by gen-
eral dynamic equation for the gas to particle conversion for the droplets, combined with
Eq. (1) for the internal dynamics of heterogeneous droplets. In general, solution of this model
is quite complicated. Even if one even only considers the coagulation of heterogeneous particles
neglecting the nucleation and condensation e<ects it becomes in general impossible to Jnd the total
enclosure distribution. Indeed, in order to Jnd the total enclosure distribution one needs to sum up
the individual enclosure distribution over all the droplets. Since the Eq. (1) is nonlinear it is in
general impossible to Jnd a single unifying governing equation for the total enclosure distribution.
In our previous works (Struchtrup et al., 2001; Efendiev & Zachariah, 2001; Efendiev et al., 2002)
we have considered the coagulation of heterogeneous aerosols without taking into account nucle-
ation and condensation e<ects. The heterogeneous aerosol particles were described using only basic
statistics of their internal state in those works. Those approaches required additional assumptions
since in general one cannot model the details of the enclosure size distribution without a complete
knowledge of particle size distribution. One of the advantages of MC approaches is that we do not
require any a priori assumption about the enclosure distribution in each droplet, and the nucleation
e<ects can be incorporated into the MC approach using the concept of hierarchical computational
volumes.

3. Hierarchical hybrid Monte-Carlo (MC) method

Monte Carlo simulation is based on the use a Jnite dimensional subset of the whole system in
order to calculate the properties of the system.

A number of Monte-Carlo techniques have been developed for the growth of dispersed systems
(Smith & Matsoukas, 1998; Gillespie, 1975; Scott, 1967; Shah, Ramakirishna, & Borwanker, 1977;
Tandon & Rosner, 1999; Rosner & Yu, 2001) and they generally fall into two classes. In the Jrst
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approach a single event is selected and then the time is advanced by an appropriate increment.
In the second approach, for a given time interval a number of successful particle interactions is
implemented. In modeling of heterogeneous aerosol we use the second approach for the enclosure
interactions. The time is advanced based on the minimum of two time intervals, the coagulation of
two droplets or the nucleation of a particle. This time increment then deJnes how many successful
enclosure interactions occurred in each droplet with more than one enclosure.

The Jnite number of particles used in the simulation introduces some limitations. Because the
accuracy of MC is proportional to 1=

√
N (Li<man, 1992) (where N is the number of the particles

in the system) one needs to terminate the computation well before there is one particle left. To
avoid this problem previous authors (Li<man, 1992; Smith & Matsoukas, 1998) have introduced
MC algorithms where the number of the particles are kept constant either by doubling the system
when the number of the particles are halved or by replacing a particle after each coagulation. This
approach is referred as constant number MC. We employ the former approach in coagulating the
droplets.

While the limitations associated with the decrease in the number of particles happens at the later
stages of MC simulations, the nucleation event introduces another diKculty associated with the large
number of particles. To handle the large number of particles we truncate our system whenever the
number of particles becomes larger than some critical number of droplets we would like to simulate.
By truncating the system in this way, the characteristic times for coagulation and nucleation are
being changed. So that in order to preserve our connection to real time, a new computational volume
represented in the simulation has to be calculated.

At each time step of the simulation, two droplets are selected randomly. Based on the volumes of
the droplets, Vi and Vj, the total number of the particles in our simulation Nk , and the actual volume
represented in the simulation Vcomp we compute the mean inter-event OT time for this coagulation
to occur (see also, Smith & Matsoukas, 1998),

OT =
2Vcomp

〈KF
ij〉Nk(Nk − 1)

; (4)

where 〈KF
ij〉 is the mean coagulation rate for the system of Nk particles and is given by

〈KF
ij〉=

∑Nk
i=1

∑Nk
j=1; j �=i K

F
ij

Nk(Nk − 1)
: (5)

At the same time, based on the current actual volume of the simulation, Vcomp we compute the
time interval Otn needed for the production of one monomer. In this sense the production rate of
monomer is e<ectively the nucleation event, in the absence of a thermodynamic barrier. In the next
section we present an expression for Otn for the exponential monomer production rate used in our
numerical simulation.

If OT is less than or equal to Otn we perform the coagulation of the chosen particles based on
the chemical composition of the particles (described below). The number of nucleated particles qk

at this time interval is also calculated. Since this number qk is not necessarily an integer and not
larger than unity we introduce the number of the total nucleated particles (monomers) Qk up to kth
time step. At each time step we recalculate Qk as

Qk = Qk−1 + qk (6)
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and nucleate [Qk] particles, where [Qk] is the integer part of Qk . Further, Qk is updated by

Qk = Qk − [Qk]: (7)

If the nucleation time Otn is less than OT , then a particle is nucleated. At the same time, the time
elapsed from the last particle coagulation should be tracked. After each coagulation of the particles
this time is set to zero, and after each nucleation this time is incremented by the nucleation time
(monomer generation time) Otn.

The coagulation of the chosen particles in our case depends on the composition of the particle.
The possibilities are (a) both particles are homogeneous and of the same kind (silica or iron), (b)
the particles are homogeneous, but di<erent kinds (one iron and the other silica), (c) one particle is
heterogeneous and the other homogeneous, (d) both particles are heterogeneous. In the next section
the implementation of this process is described.

After each time increment (no matter if the particles are nucleated or the coagulation of two
droplets occurred) we use the elapsed time min(OT;Otn) to compute the number of successful
enclosure interactions. This restriction on the time step is the primary limitation in the computational
speed of the simulation method.

In an analogous manner to that of the droplets we also deJne the mean inter-event time for the
enclosures in a droplet of volume V as

Ot =
2V∑n−1

i=1

∑n−1
j=1; j �=i K

D
ij

; (8)

where n is the number of the enclosures, and n=V is their number density. From here the number
of successful enclosure interactions inside the droplet during the time interval OT is given by the
integer k which satisJes

k∑
i=1

2V
〈KD

ij 〉(n− i)(n− i − 1)
6OT6

k+1∑
i=1

2V
〈KD

ij 〉(n− i)(n− i − 1)
: (9)

On the left-hand side of Eq. (9) we have the total time needed for the coagulation of k enclosures
and on the right-hand side the total time needed for the coagulation of (k + 1) enclosures. In the
next section we describe the accurate computational implementation of the enclosure interaction.

After each time step we reconsider the total number of the particles in the system, or in other
words the total volume represented in our simulation. If the total number of the particles is larger
than our chosen certain critical number Ncrit, then Ncomp number of particles are randomly chosen
to be our new system. Next we rescale the volume of the system by taking the ratio of the total
volume of the particles in our new system to the total volume of the particles in the previous system
with Ncrit particles,

s=
∑Ncomp

i=1 Vi∑Ncrit
i=1 Vi

; (10)

determines the new volume represented in our simulation with Ncomp particles

Vcomp = sVcomp: (11)

The revised Vcomp is then used in the computation of the coagulation and nucleation (monomer
generation) times.
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Volume represented in the simulation

t=t1 t=t2 t=t3

t=t4 t=t5 t=t6

Fig. 3. Schematic description of hierarchical structure of MC at di<erent increasing time instants, t1¡t2¡ · · ·¡t6.

On the other hand, if the total number of the droplets is less than certain ncrit we top up our
system by replicating each particle with its equivalent enclosure state. In order to preserve the
physical connection to real time, the topping up process must preserve the average behavior of
the system corresponding to the time prior to topping up. In particular, one has to ensure that the
characteristic time for droplet coagulation stays the same. In this case it is necessary to increase the
system volume in proportion to the increase in droplets.

Because of the use of a time-dependent scaled simulation volume we call our approach hierarchical
hybrid Monte-Carlo (Fig. 3)

4. Numerical implementation

To implement the numerical computation we deJne the coagulation probability by

pij =
KF

ij

KF
max

; (12)

where KF
max is the maximum value of the coagulation kernel among all droplets. This probability

should in principle be normalized by the sum of KF
ij, but the choice of KF

max is often employed in
order to increase the rate of acceptance. It also has the advantage of saving CPU time, because the
computation of the sum of kij over all the enclosures is quite expensive.

A coagulation event is determined to occur only if a randomly drawn number from a uniform
distribution is smaller than the probability of the coagulation pij. If the coagulation is rejected, two
new particles are picked and the above steps are repeated until the coagulation condition is satisJed.
On the completion of this step the time increment OT is computed according to (4).

At the same time the time increment for the nucleation of nnucl particles is computed. For our
numerical simulation we follow previous experimental and numerical studies on the vapor phase
formation of iron oxide monomer (Biswas et al., 1997), and assume that the production of the
particles will be given at time t by

Nnucl = N0(1− exp(−kt)); (13)
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where Nnucl are the number of particles produced up to time t, N0 are the total number of monomers
and k, is the unimolecular rate constant for monomer production. For the exponential rate of pro-
duction, the time interval for the production of nnucl particles in a simulation volume Vcomp is given
by

Otn =
Vcomp

V0

nnucl
N0R

exp(kt): (14)

Based on the time increments Otn and OT we determine the computational time increment as
Otcomp = min(Otn;OT ).
If Otn is smaller than OT (the latter is the inter-event time for droplet coagulation) we nucleate

nnucl particles. Note that some portion of the nucleated particles (in our case 1=6, based on exper-
imental conditions) are iron particles, and the rest (5=6nnucl) are silica particles. Further, we add
Otcomp to the time increment counted from the last droplet coagulation, Otcoag,

Otcoag = Otcoag + Otn: (15)

If Otn is larger than OT , we set Otcoag to zero, and perform particle coagulation based on the
types of particles that were chosen. The following cases are possible: (a) If both particles are of
the same type and homogeneous, then a new particle of the same type with volume Vi + Vj is
formed and the particles i and j are removed. (b) If the particles are homogeneous, but of di<erent
types; then the resulting particle is a droplet with volume Vi +Vj with one enclosure whose volume
corresponds to the volume of iron particles. (c) If one of the selected particles is homogeneous and
the other is a heterogeneous particle. If a homogeneous particle is iron then the resulting particle is
heterogeneous and its internal state as well as its volume change. The resulting particle will have
one more enclosure and its volume will be Vi + Vj. If a homogeneous particle is silica then the
resulting particle is heterogeneous and its internal state does not change, but its volume does. The
volume of the resulting particle will be Vi + Vj. (d) If both particles are heterogeneous particles;
then the resulting particle has volume Vi + Vj and the enclosure distribution of the resulting droplet
is the some of the enclosure distributions of the particles i and j.
Further, the enclosure interactions are handled in the following way. Based on elapsed time interval

Otcomp the enclosure interactions in each droplet are performed in the following way. After each
lth successful enclosure collision in a droplet of volume V we compute the inter-event time for a
collision,

Otl =
2V∑n−l

i=1

∑n−l
j=1 KD

ij

: (16)

If this inter-event time is less than Otcomp one performs additional collisions until the sum of the
inter-event enclosure collision times is larger than Otcomp. As soon as the sum of inter-event enclosure
collision times becomes larger than Otcomp one stops the enclosure coagulation and computes the
extra time spent during the enclosure interactions. Assume there were k enclosure interactions with
the inter-event times Otl (l=1; 2; : : : ; k). Then the extra time spent during the enclosure interactions
is deJned for each droplet and given by

k∑
l=1

Otl −Otcomp: (17)
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Randomly choose two droplets, i and j, and calculate the collision probability

Calculate dT, the time between successive coagulating events.

t=t+dT

the systemthe system
If N>N_limit, restrict 

Perform the collision of

Nucleate particlesEnclosure interaction

If  N>N_limit, restrict the system

Enclosure interaction

If dt<dT, nucleate Nc monomers If dt>=dT 

Calculate dt_c, the time when Nc monomers will nucleate, and the total time
           dt=dt+dt_c elapsed from the last particle coagulation

t=t+dt_c

If N<N_limit, extend

 particles
multi−component heterogeneous 

Fig. 4. Flow chart of the Monte-Carlo algorithm.

This extra time is taken into account at the next time step Otcomp. In particular, Jrst the enclosure
coagulation at the next time step inside the droplet is increased by the amount of extra time. At the
end of each times step the extra time spent during enclosure interactions is updated. We also would
like to note that if two droplets collide then the extra time spent in the resulting droplet is taken to
be the sum of the extra times spent in each droplet.

The enclosure interaction in a droplet is performed in the same way as for droplets. The probability
of the collision of randomly selected two enclosures i and j is given by

pij =
KD

ij

KD
max

; (18)

where KD
max is the maximum value of the coagulation kernel among all droplets.

When the number of the droplets are below some threshold value we replicate the droplets and
their internal state. When the number of particles are above some given threshold value Nthreshold we
randomly choose Ncomp particles and compute the new computational volume.

A Iow chart of our Monte Carlo algorithm is depicted in Fig. 4.

5. Simulation results

The hierarchical hybrid MC approach is applied to the growth of SiO2=Fe2O3 binary aerosol. The
simulation begins with adding silica and iron monomers of size 0:5 nm with exponential rate k given
by (13). The total volume ratio of the silica to the iron particles in the system is kept constant and
equal to 5 at all times. We consider the total volume loading, NtotalVmonomer, to be 1:6e − 7.
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Two temperature settings are considered, T = 2400; 2600 K. Since silica is the major phase, it is
the working Iuid whose viscosity will govern the rate of Brownian transport of the minor phase
and therefore the growth rate of enclosures. The viscosity of the major component silica (SiO2) as
a function of temperature is given by (Jans, Lakshminarayanan, Lorentz, & Tomkins, 1968)

� = 10−8:6625(1−3556:03K=T ) kg
m s

; (19)

and the density of SiO2 is held constant at �= 5:5 g=cc. The dimensional parts of collision kernels
are given by

KD =
2kT
3�

;

KF =
(

3
4�

)1=2 (6kT
�

)1=2

V 1=6
monomer : (20)

Note that KD is a very strong function of temperature, while KF is essentially temperature
independent.

Since an iron oxide and silica are not miscible, an accommodation factor, �, is used in heteroge-
neous condensation. Two values of � will be used in the numerical simulations, �=1 and 0.025. In
the numerical simulations the monomer production rate is given by (13)

Nnucl = 4:16e − 9(1− exp(−k t))mol=cc=s; (21)

with the variable rate constant k. In particular, we take k to be sensitive to temperature and given
by 5:5e + 5 exp(−5030=T )=s or 5:5e + 5 exp(−10060=T )=s.
The total number of the droplets in our numerical simulation is kept always above 1500. The

critical number of particles when we truncate the system to 1500 droplets are taken to be 4500.
Note that mean number of the enclosures per droplet can reach ∼ 2000. Thus, the total number
of iron particles in the system is 2e + 6! To handle such large systems the code stores and deals
with the droplets and their internal state in arrays. In particular, we store all the enclosures in an
array, ui; i = 1; : : : ; N , where ui is the volumes of the enclosures. Then we deJne the array for the
number of the enclosures in each droplet, ni; i=1; : : : ; n and the array for the volume of each droplet
Vi; i = 1; : : : ; n, where Vi is the volume of the droplets. Here, n is the number of the droplets and
N is the total number of the enclosures. After each coagulation process we sort all the enclosures,
ui and the droplets Vi.
Before discussing the simulation results we would like to make a comment about the use of

mean-Jeld equations (in our coagulation constants) for enclosures. One can argue that the description
of the enclosures on statistical terms makes sense only if the number of enclosures is suKciently
large. This criticism can be resolved, however, since our system contains a large number of similar
droplets. While the behavior of enclosures in a single droplet may not be well described statistically,
the behavior of the enclosures in a large number of similar droplets can be described statistically.
In that sense we consider the most likely behavior of enclosures in a droplet. We will show later
that the behavior of enclosures in each droplet is similar and mean number of enclosures per droplet
increases. Moreover, we would like to note that it would be easy to incorporate a particular dynamics
associated with small number of particles in MC simulations.
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Fig. 5. Iron monomer concentration, � = 0:025; T = 2600 K.

In our Jrst numerical example (Fig. 5), we calculate the iron concentration for di<erent monomer
production rates. As expected a larger monomer production rate constant results in a more rapid
appearance of the monomer, with a higher peak value.

The polymerization of iron monomer is insensitive to temperature because the dynamics of
monomers is governed by free molecule coagulation which is a very weak function of tempera-
ture. Note that for the purposes of these calculations we neglect three-body energy transfer e<ects
(Zachariah and Tsang, 1993, 1995). By contrast, the concentration of iron monomers are very sen-
sitive to the sticking coeKcient, � (Fig. 6). A small � results in a very large monomer pool. Indeed
because of small sticking coeKcient iron monomers would most likely coagulate with other iron
particles. Since the concentration of iron monomers is Jve times less than that of silica, the proba-
bility of chosen two random particles to be iron monomers is very small. The presence of large iron
monomer pool implies that heterogeneous growth processes for the minor phase is very important
route to growth, particularly when one considers that the minor component is primarily interacting
with an aerosols surface comprised primarily of the major phase.

Next we study the normalized variance of droplets (see Fig. 7). A larger rate of monomer produc-
tion results in a smaller variance as homogeneous nucleation becomes a more dominant growth mode
relative to heterogeneous condensation. Essentially, at the highest source rates the system has not
had suKcient time to produce enough particulate surface area to compete for the monomer, which
because of its higher concentration favors dimer formation (see Fig. 5). In addition to this e<ect,
the smaller the production rate of monomer the longer the monomer production will last, thus we
observe monomers as well as large particles, and the variance of droplet size distribution increases
until the production of monomers ends. At large times, relative to monomer production, the value
of the normalized variance clearly approaches an asymptotic value or self-preserving condition.
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Fig. 6. Iron monomer concentration for di<erent values of �. Monomer production rate, k = 1:14e + 4=s (see (21)).

We now turn our attention in Fig. 8, to the e<ect of the sticking coeKcient, � on the normalized
variance of droplets. If � is small, then the monomer concentration remains high, and from the point
of view of the size variance, the behavior is similar to having a low monomer production rate.
The longer lasting monomer widens the size distribution and delays the onset of the self-preserving
condition.

Thus, far we have focused our numerical simulations on the initial behavior of our multi-component
system, which we conclude is very sensitive to the sticking coeKcient. We turn our attention to the
longer time behavior of the system. Here because the monomer has been exhausted the sticking
coeKcient has no role to play and we restrict our next numerical simulations to the case where
�= 1.

One of the quantities of interest is the phase segregation process which can be assessed by
addressing the relative volume growth of enclosure due to the presence of the major phase. In
Figs. 9 and 10 we plot the ratio of mean volume growth of droplets to enclosures, TV SiO2= TV Fe2O3 .
This quantity is an indicator of the relative volume growth of iron oxide particles. Note that in
the absence of the droplets, the enclosures would now be the aerosol and would coagulate in the
free-molecular regime, and their growth rate would be proportional to the growth rate of droplets
(note that the density of SiO2 and Fe2O3 are very similar). More precisely, the growth rate of the
enclosures (would now be the aerosol) is 1=c times the growth rate of the droplets (c represents the
ratio of the volume fractions of silica to iron which is taken to be 0.2 in our simulations). Thus,
TV SiO2= TV Fe2O3 is an indicator of relative moderated growth rate of iron oxide due to the presence of
the major phase. We see from Fig. 9 that introducing the major phase, SiO2, we e<ectively moderate
the growth rate of the minor phase by some ∼ 1500 times in 0:25 s. Comparing Figs. 9 and 10 we
notice that a slight change in the temperature drastically increases the volume growth of enclosures.
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Indeed, because of the lower viscosity of the major phase (silica droplet) the moderation rate will
be signiJcantly diminished, thus the coagulation of the enclosures will be faster, and therefore the
enclosure average volume will be larger. More importantly perhaps is that the presence of the major
phase can be used as a very signiJcant moderator to nanoparticle growth with the temperature being
the control variable (through the viscosity of the major phase).

We notice from Figs. 9 and 10 that if the monomer production rate is slower then the relative
volume growth is higher at initial times. This can be explained in the following way. If the monomer
production rate is slow then the particles have suKcient time to grow. During the growth the silica
particles will grow faster than the iron particles because whenever iron particles become enclosures
their growth is moderated. On the other hand, at higher rates, due to the excess of monomers that
have not coagulated, the relative volume growth diminishes.

From Figs. 9 and 10 it is also clear that the relative volume growth increases at a slow rate at
large times. In these Jgures we plot a curve (designated by the dashed line) showing the asymp-
totic behavior (large time) of the relative volume growth. The asymptotic behavior of the relative
volume growth is obtained from the following scaling argument. Balancing the characteristic times
for enclosure and droplet coagulations, we obtain

1
KF
0N

∼
TV

KD Tn
; (22)

where TV is mean droplet volume, Tn is mean number of enclosures per droplet, and KF
0 = KF( TV=

Vmonomer)1=6. Further taking the volume fraction of the enclosures in each droplet with volume V to
be cV (c is the total volume fraction of iron to silica which is assumed to be constant at all times),
(22) becomes

TV
KF
0N TV

∼ Tu
cKD ; (23)

where TV is the mean volume of droplets, and Tu is the mean volume of the enclosures. From this
expression

TV
Tu
∼ KF

0!
cKD ; (24)

where ! is the volume fraction of droplets. Next we note that KF
0 grows as TV 1=6, while the Brow-

nian kernel is independent of the mean volume growth. Assuming that droplet size distribution is
self-preserving at large times, then TV 1=6 would grow as t1=5 (Friedlander, 2000). Thus TV= Tu would
grow as t1=5. The asymptote curves (designated by dashed lines) in Figs. 9 and 10 are of the form
x∼ t1=5. Clearly, at large times the growth of the relative volume has the behavior ∼ t1=5.

In our analytical calculations of relative growth we assumed that the volume fraction of the
enclosures in a droplet of volume V is given by cV . To show this, in Fig. 11 we calculate
the normalized variance of volume fraction of the enclosures in a droplet. Since the ratio of the
total volumes of SiO2 and Fe2O3 is constant at all times the mean value of enclosure volume
fractions is c. As we see from our numerical results that enclosure volume fractions are almost
uniform at large times, i.e., the normalized variance reaches to unity. Moreover, for smaller rates
the normalized variance approaches to unity faster, because the production of monomers terminates
earlier.
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Fig. 11. Normalized variance of enclosure volume fraction of each droplet for di<erent k: � = 1; T = 2400 K.
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Finally, in the last two Jgures (Figs. 12 and 13) we present the enclosure distribution at di<erent
times by plotting the dimensionless enclosure size distribution  ($)= n(v; t) Tv=n∞, versus the dimen-
sionless volume $= v= Tv, where n∞ is the total number of enclosures. Clearly, the distributions have
approached to a self-preserving form for Brownian coagulation (the numerical values of  ($) are
taken from Vemury, Kusters, and Pratsinis (1994)). This is associated with the fact that at large
times the mean number of enclosures per droplet is large. The mean number of enclosure per droplet
can be calculated from (22), Tn=c TV= Tu. If mean number of the enclosures per droplet is large enough,
the self-preserving form of the enclosure distribution is approximately the same as that corresponding
to the Brownian coagulation, and the coagulation of the droplets does not inIuence the enclosure
size distribution (see Efendiev & Zachariah, 2002).
Note that if the number of enclosures in a droplet becomes too large for the simulation, one

can truncate the enclosure system within a droplet by randomly picking a certain number of en-
closures and adjusting the corresponding computational volume (similar to the droplets). Observing
that when the mean number of enclosures per droplet is large, the enclosure population reaches the
self-preserving form corresponding to Brownian coagulation, it is unnecessary to run the simulations
further.

6. Conclusions

In this paper we have presented a hierarchical hybrid Monte Carlo technique to simulate the
simultaneous nucleation, coagulation and phase segregation of immiscible two-component aerosols.
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Our approach combines two MC simulations with numerical treatment of a kinetic nucleation pro-
cess. One MC loop simulates the coagulation of droplets and the other simulates the interaction
between enclosures. To account for nucleation we introduce the hierarchy of computational volumes
represented in the simulation. The method was applied to the SiO2=Fe2O3, binary system which we
have studied in our previous work (Struchtrup et al., 2001; Efendiev et al., 2002) using the sectional
models.

Our MC approach allows us to compute various average properties of our system an initial as well
as at large times. The initial time behavior depends on the parameters of nucleation, and sticking
factors, while the asymptotic behavior is essentially independent of the initial conditions, but very
sensitive to temperature.

The relative volume growth of the enclosures due to the presence of droplets is computed. The
computations show that this quantity increases at a slow rate and that the asymptotic behavior
is independent of the initial conditions with the exception of temperature. The computations of
the statistics of enclosure size distribution indicate that the enclosure size distribution reaches the
self-preserving condition at large times and is very close to the self-preserving distribution for
Brownian coagulation.

One of the main advantages of our MC approach over the sectional multi-variate models is that
MC framework introduced here is amenable to the inclusion of additional phenomena.
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