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a b s t r a c t

It has been a big challenge to explore a direct relation of experimental parameters such as pH, electrolyte
concentration, particle size, and temperature with the final structures of aggregates, because Monte Carlo
simulations have been performed on the basis of arbitrarily chosen sticking probability. We attempted to
incorporate colloidal theory to Monte Carlo simulations for two model systems of CuO– and SiO2–water
systems, so as to resolve this difficulty. Conducting three-dimensional off-lattice MC simulations at var-
ious pHs for both systems, we investigated effects of pH on fractal structures of aggregates, encompassing
the whole aggregation regime from diffusion-limited cluster–cluster aggregation to reaction-limited
cluster–cluster aggregation. Moreover, developing a functional analysis, we found an explicit correlation
between experimental parameters, sticking probability, and the fractal dimension of aggregates for both
systems.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Control of aggregation of particles in a gas or a liquid is of great
interest in a variety of applications. For example, severe aggregation
of particles during sol–gel reaction [1] or flame aerosol synthesis
[2–5] should be avoided for the purposes of sintering [2] and nano-
therapeutics [6]. Fractal-like aggregates, when they are compacted
and sintered to form a bulk solid, often make internal pores bigger
and non-uniform, causing a sudden grain growth at the final stage
of sintering [2]. Aggregation also leads to polydispersity of produced
nanoparticles, hampering their application to nanotherapeutics in
human [6]. On the other hand, open-structured aggregates can often
offer benefits to enhance energy transfer in nanofluids due to the
percolation effect on heat transfer [7,8] or to reduce heat transfer
rate as a thermal insulator by constituting porous aerogel structures
[9], and as catalytic electrodes with lowered electrical resistance in
fuel cells [10]. The control of aggregation is thus critical to many
applications and provides the impetus for better predicative
capabilities.

Many approaches have been developed to simulate aggregation.
Monte Carlo (MC) simulation offers some benefits in enabling to pre-
dict both the evolution of the aggregate structure and the aggrega-
tion kinetics [11–19]. Recently, three-dimensional off-lattice MC

simulation method has been preferred rather than on-lattice MC
simulation because a random directional movement of particle is
not restricted to lattice sites [16]. Hence, the term of MC simulation
that will be used hereafter represents the three-dimensional off-lat-
tice MC simulation method unless otherwise noted. Brownian
dynamics simulation [20,21], while offering similar benefits, re-
quires much longer computation time. While population balance
equations [22,23], which is computationally more efficient for sim-
ulating the aggregation kinetics, does not provide any information
on aggregate connectivity. MC simulations are particularly useful
in tracking the different regimes of aggregation, i.e., diffusion-lim-
ited cluster–cluster aggregation (DLCA), or reaction-limited clus-
ter–cluster aggregation (RLCA) [24–26]. Traditionally, however,
MC simulations reveal that the geometrical characteristics of aggre-
gates described by the fractal dimension (df) are highly model-
dependent, for example, the df of 1.75–1.8 for the DLCA and df of
2.1–2.2 for the RLCA [11–18,24–26].

The DLCA and the RLCA represent two limiting regimes and
evolve by the efficiency of collision, i.e., the average number of col-
lisions for permanent inter-particle bonding, that can be expressed
as a sticking probability (Pij) in the range of 0–1. Close to unity,
each collision yields growth of the aggregates, so that the overall
growth rate approaches that of the diffusive flux and represents
the DLCA regime. For Pij near zero (RLCA), most collisions are
reflective which enables the monomer to skip from one site to an-
other, and penetrate deeper within the aggregate to make a denser
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structure. It should be noted however that while MC simulations
seemingly imply the ability to predict aggregate structure, the
key parameter of Pij should be known as an input parameter prior
to the simulation. For this reason, the majority of previous MC sim-
ulation studies were made on the basis of an arbitrarily chosen
probability. As such, MC has not found use in the simulation of real
world systems where the operational parameters to control aggre-
gation are process parameters, e.g., pH, electrolyte concentration,
and temperature. How these parameters connect to the sticking
probability used in MC simulation is thus a key point.

In this study, we employ both a surface complexation model
and Derjaguin–Landau–Verwey–Overbeek (DLVO) theory
[1,7,27,28] to provide the linkage between experimental process
parameters and the Pij values, via consecutive calculations of sur-
face charge states, total interaction potential between particles,
anti-collision or suspension stability of particles. Two model sys-
tems of CuO– and SiO2–water was chosen to apply this process, be-
cause aggregation control is of great importance in many
application fields [29–31], and electrokinetic parameters of the
two materials are well known but contrasted, making the current
analysis quite appropriate in a wide range [1,32,33]. By performing
three-dimensional off-lattice MC simulations as a function of pH
for both systems, we investigated effects of pH on the fractal struc-
tures of aggregates, encompassing the whole aggregation regime
from DLCA-to-RLCA. Finally, we find an explicit correlation be-
tween experimental parameters and the fractal dimension of par-
ticles for both systems.

2. Surface charge states and inter-particle potentials

2.1. Surface complexation model

When solid particles such as oxides, sulfides, and insoluble salts
are immersed in aqueous solution, they acquire a surface charge
due to protonation or deprotonation of surface groups such as
the hydroxyl ligand (–OH) of the metal oxide as follows [1,7,27]:

MOHþHþ !
Kp

MOHþ2 ; Kp ¼ exp
Fw0

RT

� �
CðMOHþ2 Þ

aðHþÞCðMOHÞ

MOH!
Kd

MO� þHþ; Kd ¼ exp � Fw0

RT

� �
CðMO�ÞaðHþÞ

CðMOHÞ

ð1Þ

where M is a metal cation, i.e. Cu2+ and Si4+ in this case, Kp and Kd

are intrinsic equilibrium constants for protonation and deprotona-
tion, respectively, a is activity in the bulk of the solution, w0 is sur-
face potential affecting the number of charged surface groups
MOH2

+ and MO�, C is a site density of the surface groups, R is the
gas constant, and T is absolute temperature. The equilibrium con-
stants are not independent each other, but interrelated through
the point of zero charge (PZC) of particles in water [1].

PZC ¼ 1
2

log
Kp

Kd

� �
ð2Þ

Counter ions with opposite polarity in the electrolyte are at-
tracted to the charged surface groups, resulting in a decrease of
the potential in the stern layer (0 < x < d) in Fig. 1. The adsorption
of the counter ions is expressed by

MOHþ2 þ A� !
Ka

MOHþ2 � A
� : Ka ¼ exp �

Fwb

RT

� �
CðMOHþ2 � A

�Þ
aðA�ÞC�ðMOHþ2 Þ

MO�Cþ !
Kc

MO� � Cþ : Kc ¼ exp
Fwb

RT

� �
CðMO� � CþÞ

aðCþÞC�ðMO�Þ
ð3Þ

where as a symmetric 1:1 electrolyte (NaCl)aq of 5 � 10�4 mol dm�3

(far less than the critical coagulation concentration of 5 � 10�2

mol dm�3) was used in this study, A� and C+ correspond to Cl�

and Na+, respectively, and Ka and Kc are the equilibrium constants
for surface adsorption of the anion and the cation, respectively.
Note that some of the parent charged sites of C(MOH2

+) and
C(MO�) in Eq. (1) subsequently associate counter ions so that the
remainder of C*(MOH2

+) and C*(MO�) are second equilibrated with
C(MOH2

+�A�), and C(MO��C+). Rearranging the terms in Eqs. (1) and
(3), the four charged site densities are expressed as a function of un-
charged site density C(MOH). The total sum of charged and un-
charged site densities is equal to the total surface site density Ctot

(ca. 5.88 � 10�6 mol m�2 for CuO [27] and 7.60 � 10�6 mol m�2

for SiO2 [34]). Using this, one can readily derive the following
equations

Ctot

CðMOHÞ ¼ 1þ KpasðHþÞ
1þ KaabðA�Þ

þ Kd=asðHþÞ
1þ KcabðCþÞ

þ KaKpasðHþÞabðA�Þ
1þ KaabðA�Þ

þ KcKdabðCþÞ=asðHþÞ
1þ KcabðCþÞ

¼ 1þ asðHþÞKp þ Kd=asðHþÞ ð4Þ

where the activity of H+ at the surface and activities of C+ and A� at
the b-plane (the inner Helmholtz plane) are given by Maxwell–
Boltzman distribution [1] as

asðHþÞ � aðHþÞ exp � Fw0

RT

� �
; abðCþÞ � aðCþÞ exp �

Fwb

RT

� �
;

abðA�Þ � aðA�Þ exp
Fwb

RT

� �
ð5Þ

The potential wb at the b-plane in Eq. (5) is often approximated
to the surface potential w0 for electrolyte ions adsorbed non-specif-
ically, which is the case for this study. It is also known that the w0 is
reasonably approximated to the Nernst potential wN (= log[a(H+)/
apzc(H+)]RT/F) with 90% accuracy [1]. The charge densities in 0-
and b-planes (r0 and rb) are given by definition as

r0 ¼ F½CðMOHþ2 Þ � CðMO�Þ� ¼ F½C�ðMOHþ2 Þ þ CðMOHþ2 � A
�Þ

�C�ðMO�Þ � CðMO� � CþÞ� ð6Þ
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Fig. 1. Structure of electrical double layer (EDL) formed at the metal oxide–water
interface14,22: counter ion A� or C+ bonded strongly to the charged group at surface
forms an immobile part of the EDL (stern layer). In contrast, in the outer region
named as a diffuse layer, such ions are bound weakly, resulting in gradual decrease
in the potential. The r0, rb, and rd are charge densities at the surface (0-plane),
inner-Hermholtz plane, and in the diffuse layer, respectively.

354 S. Kim et al. / Journal of Colloid and Interface Science 344 (2010) 353–361



Author's personal copy

rb ¼ F½CðMO� � CþÞ � CðMOHþ2 � A
�Þ� ð7Þ

The sum of the two charge densities, or so-called net surface
charge rs, is balanced with that in the diffusive layer rd (refer to
Fig. 1) as

rs¼r0þrb¼ F½C�ðMOHþ2 Þ�C�ðMO�Þ�¼�rd¼�
4000FI

j
sinh

Fwd

2RT

� �
ð8Þ

where I is ionic strength in the units of mol dm�3, F is Faradays con-
stant (96,485 C mol�1), and the reciprocal Debye–Huckel parameter

j�1 (=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0erRT=2000F2I

q
) often scales as the thickness of the electri-

cal double layer. Hunter [1] suggested that the electrokinetic or zeta
potential (f) measured the electrostatic potential at, or very near to,
the beginning of the diffuse layer (wd � f) [1]. Hence, starting with
the approximation of w0 � wN, the activities of as(H+), ab(A�), and
ab(C+) are estimated using Eq. (5). Together with initial guesses of
Kp, Kd, Ka, and Kc, the activities and potentials are applied to Eq.
(4), so as to obtain the C(MOH). It is fairly straightforward to calcu-
late all the charged site densities by using Eqs. (1) and (3). Then,
Eqs. (6)–(8) give the surface charge densities of r0, rb, rs, and rd,
leading to update of wd approximating f. This process is repeated
with different values of the four equilibrium constants until the
estimated f gets closest to the measured value at different pHs.

Fig. 2 shows the variations of f potentials measured for SiO2– and
CuO–water systems at various pHs, in comparison with the best-fit-
ted profiles depicted with dotted lines. Details for the measurement
of f potentials were described in our previous publication [27]. All
parameters used for the best fit are listed in Table 1. To verify this
model, the values of 0.5 log(Kp/Kd) for both systems are calculated
from the parameters in Table 1 and then compared with the PZC
values from literature [1,32,33]: the calculated values of 8.12 and
2.05 for CuO and SiO2 systems are both in good agreements with
the literature values of 8–9 and 2–2.5, respectively.

Fig. 3 shows that the surface charge density r0 is in fairly close
agreement to the net surface charge density rs (= �rd) unless the
pH is far from the PZC, which is particularly true in the case of CuO.
This suggests that the effect of surface association by counter ions
might be insignificant at �3.0 < DpH (� pH � PZC) < 3.0. The region
ofDpH corresponds to transition region between DLCA and RLCA that
is of particular interest in this study and will be shown later.

2.2. Inter-particle potentials and suspension stability

According to DLVO theory which describes the stability of col-
loids [7,21,27,28], particles in liquid suspension repel or attract
each other depending on the total interaction energy Utot which
is the sum of electrical repulsion energy Uel and van der Waals
attraction energy UvdW. Verwey and Overbeek (1948) [1] showed
that a very good approximation of the Uel between two identical
flat surfaces, valid for all potentials, would be

Uelðflat plateÞ ¼ 32
e0erR

2T2

F2z2
Z2 1� tanh

jx
2

� �h i
ð9Þ

in the case of a weak overlapping of the double layers, where z is the
charge of the solvated ions (= 1.0 in this study) and Z � tanh[zFwd/
(4RT)]. For two identical spherical particles approaching each other
under the constant potential condition, the repulsion energy Uel is
calculated by applying Deryaguin approximation [1] to Eq. (9) as

Uel ¼
Z 1

x
Uelðflat plateÞdx ¼ 32pr

e0erR
2T2

F2z2
Z2 ln½1þ expð�jxÞ�

ð10Þ
where r is particle radius, and x is the surface-to-surface distance
between the two particles. For small potentials (Fwd 6 2RT), since
Z is well approximated by zFwd/(4RT), Eq. (10) reduces to the follow-
ing popular equation:
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Fig. 2. Comparison of measurements and model predictions of zeta potentials for
CuO– and SiO2–water systems at various pHs.

Table 1
Parameters used for the estimation of the f potential.

CuO SiO2

Kp/mol�1 dm3 1.8 � 104 1.5 � 10�1

Kd/mol�1 dm3 9.0 � 10�13 1.2 � 10�5

Ka/mol�1 dm3 58 1
Kc/mol�1 dm3 1 2550
Ctot/mol�1 dm3 5.88 � 10�6 7.64 � 10�6

T/K 298
R/J mol�1 K�1 8.31
e0/C V�1 m�1 8.854 � 10�12
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aqueous solution at various pHs.
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Uel � 2pe0errw
2
d ln½1þ expð�jxÞ� / w2

d ð11Þ

Thus, it is obvious that the higher the surface potential, the more
stable the colloid, due to the higher electrical repulsion energy. If the
value of Fwd increases over 4RT, one has to be careful in using Eq. (11)
because the repulsion energy Uel is overestimated by Eq. (11) due to
the nature of the hyperbolic tangent function in Z. Therefore, Eq. (10)
should be used at high surface potential. The van der Waals attrac-
tion energy between adjacent particles is given under Derjaguin
approximation in the non-retarded limit by [1,6,7,21,27,28]

UvdW ¼ �A132r
12x

ð12Þ

where A132 is the Hamaker constant of 4.6 � 10�21 J and 2.0 � 10�20

J for SiO2– and CuO–water systems, respectively [1,21,27,35].
Applying the parameters in Table 1 and the results in Figs. 2 and

3, the total interaction energy Utot defined as the sum of Uel and
Uvdw are calculated as a function of the distance between two par-
ticles, x, and is shown for both colloidal systems in Fig. 4. Recalling
the PZC of 8.12 for the CuO–water system, Fig. 4a shows that the
maximum of the total interaction energy representing the repul-
sion energy barrier (Utot,max) increases as pH goes far from the
PZC, leading to more stable colloidal system. In Fig. 4b, SiO2 parti-
cles exhibit a similar behavior of the Utot,max when increasing pH
from the PZC of 2.05. Note that the highest value of Utot,max in
CuO–water system (	7.3 kbT at DpH = �5.12) is a little smaller
than that in the SiO2–water system (	8.3 kbT at DpH = 4.95).

The higher energy barrier in SiO2–water system is attributed to a
smaller contribution of the attraction energy UvdW to lowering the en-
ergy barrier due to the smaller Hamaker constant (see Table 1). Fig. 4a
also shows that the x value at which Utot is maximum (xmax) gradually
increases from 2.7 nm to 	7.7 nm as pH approaches PZC. At pH 8
closest to PZC, the total interaction energy is negative at the entire re-
gion of x. In a stable colloidal system, Utot is dominated by the positive

Uel in most region of x, so that the negative UvdW gives rise to a limited
effect only very near the particle surface. In contrast, when Uel de-
creases gradually as pH approaches PZC, the x region affected by
the UvdW becomes broadened, resulting in a gradual increase in the
value of xmax. Likewise, in the SiO2–water system having a smaller
Hamaker constant, the xmax is momentarily expected to appear closer
to the particle surface, which is confirmed in Fig. 4b.

The stability of a colloid can be characterized by a dimensionless
factor, the so-called stability ratio, W, which is defined by the ratio of
‘‘number of collisions between particles” to ‘‘number of effective col-
lisions that result in coagulation” [1]. Large W denotes a stable colloi-
dal system where only a fraction, 1/W, of collisions are successful to
cause a coagulational growth. From this regard, the reciprocal value
of W has been interpreted as a sort of probability for the effective
coagulation event, i.e. the sticking probability Pij [11,36,37]. As the
stability ratio W has been estimated from phenomenological coagu-
lation rates determined by turbidity measurement, low angle light
scattering and dynamic light scattering [1,38], it should be noted
that the W does not say what happens in a microscopic level. Sun
et al. [38] attempted to directly measure the sticking probability Pij

in the microscopic level by inducing a collision between two
approaching particles in an optical trap (tweezer) and observing if
the collision led to a permanent doublet. They showed that the mi-
cro-scale value of Pij was in a very good agreement with the
macro-scale value of 1/W. Fuchs derived a general relationship of
the W to the Utot for equal-size particles in suspension as [1,27,28,37]

W ¼ 2r
Z 1

0

exp½UtotðxÞ=kbT�
ðxþ 2rÞ2

dx ¼ 1
Pij

ð13Þ

Hence, Eq. (13) gives an important relation between Pij or W and
experimental process parameters through the interaction poten-
tial, Utot. The value of W is obtained by conducting a numerical
integration for Eq. (13) and is shown in Fig. 5 as a function of pH
for both systems. Verwey and Overbeek (1948) [1] showed that
the W was determined almost entirely by the value of maximum
energy barrier Utot,max. This is hardly surprising because Utot(x) en-
ters the integrand through an exponential function. The ratio W
can be therefore approximated by the value of exp(Utot,max/kbT).
Recalling Fig. 4 where Utot,max in the SiO2 system is higher than that
in the CuO system at equal values of pH, the SiO2 system should ex-
hibit a higher value of W or a better stability than the CuO system,
as shown in Fig. 5.

3. Monte Carlo simulations

Three-dimensional off-lattice Monte Carlo simulations are uti-
lized to simulate irreversible aggregation in the two model systems
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at different pHs. It is noted that the effect of either pH or any other
systematic parameter can be realized in the MC simulations only
through the stability ratio W or its reciprocal value Pij (see Eq.
(13)). Moreover, irreversible aggregation implies that every ‘‘effec-
tive” collision event generates a permanent inter-particle bonding.
In this study, neither bond breakage nor restructuring of aggre-
gates [16,17,39] is considered.

The algorithm for the MC simulation is depicted in Fig. 6. The
simulation starts with NT non-overlapping identical spherical par-
ticles distributed randomly in a cubic box with edge length of L.
Here L is determined through the definition of the volume fraction
of the particles (/) in the box: / = NT vp/L3 where vp denotes the
volume of a single primary particle as vp = p/6 dp

3 = 4p/3 r3. There-
fore, increasing NT represents larger size of the box (L) at a constant
/. The volume fraction, /, is set to 5 � 10�4 at which the f potential
was experimentally measured. A periodic boundary condition is
applied to all boundaries [13,16–18]. As a first step, a particle or
aggregate (also referred to as cluster) is randomly chosen and then
diffuses to random directions in a constant MC time step (set to a
thousandth of characteristic collision time, typically <1 ls). The
diffusion displacement Ds is set to a maximum allowable distance
below which the resultant fractal dimension (df) exhibits a negligi-
ble variation. A series of MC simulations with various trials of Ds
verified that the radius of the primary particle is a good choice,
which was also confirmed by others [16].

Note in Fig. 6 that particle diffusion takes place conditionally only
when the diffusion probability Pdiff is larger than a random number
drawn between 0 and 1. Pdiff is defined by the ratio of diffusion coef-
ficient Di of the selected particle to that of the smallest particle in the
box, i.e., the maximum diffusion coefficient Dmax at that time. This
condition allows smaller particles to have more chances to move,
reflecting the faster diffusion of these particles. The diffusion coeffi-

cient Di is estimated by the modified Stokes Einstein relation as
Di(mi)/mi

�1/df where mi is the mass of the selected particle or aggre-
gate [13,15,40,41]. It should be recalled from Fig. 4 that the maxi-
mum energy barrier appears in very short range from the surface
(at xmax = 1–8 nm) in most conditions. At the present volume
fraction of particles (0.00054), the inter-particle separation is
estimated to ca. 250 nm, two orders of magnitude larger than the
xmax. This suggests two important things that will greatly reduce
the calculation time as compared to Brownian dynamics simulation:
(1) Brownian random motion of particles is hardly affected by the
interaction potential unless particles approach very closely and
(2) the interaction between two aggregates is most likely dominated
by the two closest primary particles existing at each end of the aggre-
gate. Thus, the Pij (or W shown in Fig. 5) is assumed to be constant
during aggregation process at each pH condition.

While particles are moving in this way, the closest surface-to-
surface distance is monitored at each MC step. When a pair of par-
ticles approach within 10% of primary particle diameter (0.1 d)
[16], the pre-determined sticking probability Pij as described in
the previous section is used to determine whether or not an aggre-
gation event takes place; when a randomly-drawn number be-
tween 0 and 1 is smaller than the Pij, those two particles stick
together. Moreover, applying two different values of the distance
(0.1 d and 1.0 d) to DLCA and RLCA regimes, we confirmed that
the resultant df were almost invariant. Finally, in any aggregation
event, if a particle diffuses too closely to another particle so that
they are overlapped, the approaching particle is set to move back
in a way that the particles make a point contact. The simulation
process is repeated until only one big aggregate remains in the
box. The computational time varies depending on NT, the sticking
probability (Pij), and diffusion displacement (Ds). In the present
simulation condition (NT = 2000, dp = 25 nm, / = 5 � 10�4), the typ-
ical calculation time ranges from 	3 h to 4 days at most while Pij

varies from unity (DLCA) to 0.001 (RLCA), respectively.

4. Results and discussion

4.1. Effect of pH on microstructure of aggregates

In Sections 2 and 3, we described how pH, as a key parameter, was
introduced to the MC simulations via the surface charge-induced po-
tential, and the resultant stability ratio. Of particular interest in this
section is to visualize structural changes of aggregates with chang-
ing pH by using the MC simulations. Figs. 7 and 8 shows representa-
tive images of the final aggregates resulting from two thousand,
25 nm diameter primary particles at the specified values of pH for
CuO– and SiO2–water systems, respectively. In the case of CuO,
Fig. 7a corresponding to the largest deviation of pH from PZC
(|DpH| = 5.12) shows the most compact structure of the aggregate
while Fig. 7c shows an open structure near PZC (|DpH| = 1.9). On
the other hand, Fig. 7b reveals an intermediate structures at
|DpH| = 2.5.

Likewise, as seen in Fig. 8, SiO2 aggregates show a similar
behavior as pH departs from PZC (|DpH| increases from 1.9 to
2.9). Thus, the pH, in the form of |DpH|, gives rise to significant ef-
fects on aggregate structures in both systems. In comparing Figs. 7
and 8, the parametric effect of pH is somewhat different depending
on materials. While both systems show similar structures at low
|DpH| of 	1.9 (see Figs. 7c and 8a), Fig. 8b at |DpH| = 2.95 looks dif-
ferent from Fig. 7b at |DpH| = 2.5 and shows a more compact struc-
ture than Fig. 7a at |DpH| = 5.1 does. This is attributed to the fact
that the stability ratio W determining the structure is not a sole
function of |DpH|, as confirmed by Fig. 5, but altered by other
material-dependent parameters such as A132, Kp, Kd, Ctot and so
forth (refer to Section 2).
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Fig. 6. Algorithmic flow chart of three-dimensional off-lattice Monte Carlo
simulations.
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Fig. 7. Snapshots of CuO aggregates in water at various pHs.

Fig. 8. Snapshots of SiO2 aggregates in water at various pHs.
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4.2. A correlation between fractal dimension and stability ratio

Fractal nature of aggregates is generally described by a power
law as [5,7,8,13,15,16,24–27,41]

Np ¼ kf ðRg=rÞdf ð14Þ

where Np is a number of primary particles comprising an aggregate, Rg

is a radius of gyration, kf is a prefactor in the order of unity, and r is a
primary particle radius. While spherical monomer particles grow to
form aggregates in a MC simulation, the fractal dimension df rapidly
decreases from 3.0 to somewhere between 1.7 and 2.1 depending
on the aggregation regime. Eq. (14) enables one to obtain a fractal
dimension of a growing aggregate in the middle of the simulation,
which was used for estimation of instantaneous value of the diffusion
coefficient Di(mi) (recall the Stokes Einstein relation) at any MC time
steps. Alternatively, one may obtain a single fractal dimension from
the slope of a log–log plot of Np vs Rg for various sized aggregates.

Fig. 9 shows an example of the log–log plot for CuO at pH = 10
(equivalent to W � 1). A data point and its error bar in Fig. 9 denote
an average and standard deviation of Rg from 50 runs of MC simula-
tions for a constant number of primary particles NT, respectively.
This simulation is repeated for various initial numbers of the primary
particles (from 10 to 2000) so as to obtain various sized aggregates.
Note that these calculations give only a single value of df at a specific
pH, so to get reasonable statistics each calculation is repeated 5–10
times for each pH and then the pH or W is varied. Such a high number
of calculations likely provide a better statistical estimation of the
fractal dimension. In this way, we obtained a relationship between
df and pH as seen in Fig. 10. As expected from Figs. 7 and 8, the value
of df obviously increases with increasing |DpH|, and follows a sig-
moidal curve. The shape of the curve suggests three regions of
|DpH| as noted in Fig. 10, i.e., the first region representing the nearly

invariant df from 1.75, the transition region exhibiting a rapid change
of df, and the near saturation region as the third. The value of
df 	 1.75 in the first region is in a good agreement with the literature
value for the DLCA regime [11–18,21,24–26]. The third region show-
ing the highest value of df in both systems likely corresponds to the
RLCA regime of slow aggregation, though the df for both systems
does not completely reach 2.1 representing the RLCA. Region two
presumably corresponds to the transition from DLCA-to-RLCA.

Another thing to be noted is that the behavior is apparently mate-
rial-dependent; the first region is bounded at different values of
|DpH|, e.g., at |DpH| =	1.4 for SiO2 system and at |DpH| = 1.9 for
CuO systems, together with the different width of the 2nd region. In
addition, SiO2 aggregates show higher values of df than CuO over
the entire range of |DpH|. These differences are readily understand-
able as long as one tries to interpret the horizontal axis |DpH| in con-
junction with the corresponding values of W by using Fig. 5. For
example, CuO at |DpH| 	 1.9 shows a nearly identical stability ratio
to SiO2 at |DpH| 	 1.0, and CuO at |DpH| 	 2.9 matches with SiO2 at
|DpH| 	 2.5 in this regard. This is exactly what we observed in
Fig. 10. Overall, starting from Fig. 4, a higher repulsion barrier is devel-
oped an SiO2 colloid due to stronger surface ionization, as well as a
less attractive potential (see Fig. 3) even at the same |DpH|. This sta-
bilizes the SiO2 colloid more than CuO, leading to higher values of df.

In addition, it should be notable that the curves of df vs |DpH| in
Fig. 10 show a very similar behavior to those in Fig. 5 (log(W) vs
|DpH|), suggesting a strong correlation between df and log(W). This
is confirmed by Fig. 11. Unlike the nonlinear sigmoidal profile of df

vs |DpH|, the df is fairly well expressed by a linear function of
log(W) as df = 1.76 + 0.10 log(W), which enables one to predict
the final structure of aggregates from the stability ratio W or pos-
sibly from the pH using Fig. 5. In Fig. 11, the present correlation is
also compared with preexisting correlations found by experiments
[25,26]. Though all correlations are consistently linear, the slopes
are somewhat different in such a way that the present correlation
seems to agree better with the Berka and Rice’s correlation [26].
Kim and Berg [25] measured aggregation kinetics of hydrophobic
polystyrene latex spheres (PSL) in D2O, while Berka and Rice [26]
used hydrophilic clay mineral–water colloid. Given that metal
oxide particles in this study are highly hydrophilic, the disagree-
ment in the slope might be attributed to the differences in solvent
affinity of colloidal particles. One might suggest that the present
linear correlation be used only for metal oxide–water colloids.

4.3. An explicit correlation between fractal dimension and pH

Though we provide the correlations of df vs log(W) and W vs
DpH, it can still be tedious to implement he model equation in Sec-
tion 2. Here, the equations are revisited in efforts to draw their
more explicit forms with a simplification, as well develop a new
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parameter that solely relates to log(W). Through a course of simpli-
fications for Eqs. (1)–(13), as described in Appendix, we obtained
an approximated form of the maximum energy barrier Utot,max

(see Eq. (A8)). According to Tsai et al. [6], the stability ratio W
essentially scales as exp(Utot,max/kbT), leading to the relation of
ln(W) = Utot,max/kbT, which is consistent with Verwey and Overbeek
(1948)’s suggestion [1] as discussed at the end of Section 2. Accept-
ing this, we can finally derive an explicit relation between the
parameters and the stability ratio W as

lnðWÞ ¼ Utot;max

kbT
� 1

kbT
a
j
� 2

ffiffiffiffiffiffi
ab

p� �
ð15Þ

where a and b were defined in Eq. (A7), just for a simpler notation.
In Eqs. (A8) and (15), the first term (a/j) on the right was always
larger than the second term of 2(ab)1/2 by at least a factor of three
when 1.0 6 |DpH| 6 3.0 for both systems. This suggests that the
ln(W) can be approximated as 	f(a/j), implying that this parameter
determines both the stability ratio of primary particles as well as
the resultant structure of aggregates.

Given the above constraints and approximations we modify
Fig. 5 by plotting the stability ratio vs a/j rather than |DpH|. The
plot shown in Fig. 12a shows that both data sets collapse to a single
sigmoidal curve implying that all material-dependent terms are
adsorbed into a. Recalling the linear relationship of df vs log(W)
in Fig. 10, we would expect another general relation of df vs a/j
to exist and this is shown in Fig. 12b. Note that all approximations
underlying Eqs. (A1)-(A8) were only to draw out the functional
form of the a, while the vertical data in log(W) in both Figs. 5
and 12a were calculated directly by using Eqs. (1)–(13) without
any approximations.

We have so far dealt with inter-particle aggregation in liquids. In
contrast, aggregation in gas phase is much simpler because the com-
plexity arises from the surface charging of solid in liquid system
which requires many complex parameters and calculations. Tradi-

tionally, aggregation in gas phase has been modeled as DLCA by set-
ting the stability ratio W of unity. The only parameter that can alter
the stability ratio in gas phase is surface charging, similar to in the
present system. To deal with the effect in gas phase, one can just re-
place Utot with conventional Coulomb potential in Eq. (13).

5. Summary

In this study, we devoted to investigate the fundamental role of
pH on microstructure of aggregates by incorporating colloidal sci-
ence to Monte Carlo simulations. We chose water-based CuO and
SiO2 colloidal nanoparticles having totally different surface charg-
ing efficiencies as model systems. First, surface complexation mod-
el was used for best fitting the f potentials measured at various
pHs, revealing other unknown parameters ahead being used to
estimate surface charge potentials and stability ratio of colloidal
particles. Plotting the stability ratio against |DpH| � |pH � PZC|
exhibited similar sigmoidal curves of the relation for two model
systems that were divided into three distinct regimes such as DLCA
limit, DLCA-to-RLCA transition, and RLCA limit. Monte Carlo simu-
lations were performed at various pHs and revealed a linear rela-
tionship between the stability ratio of particles and fractal
dimension of resultant aggregates which trend was consistent with
previous experimental results. Nevertheless, the stability ratio was
not a sole function of |DpH| but affected by other material-depen-
dent ionization parameters such as Ctot, Kp, j, and PZC, as well as
physical parameters of particle radius and temperature. Develop-
ing a functional analysis, we successfully derived a new parameter
incorporating all pre-mentioned parameters so that the stability
ratio and fractal dimension were both expressed only by the single
parameter.
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Appendix A

The first step to draw an explicit correlation between the stabil-
ity ratio and experimental parameters is to make experimental
parameters explicitly appear by converting Eq. (7) as

r0 ¼ FCtot
10�0:566DpH � 100:566DpH

10PZC=KP þ ð10�0:566DpH þ 100:566DpHÞ

� FCtotKp

10PZC ½10�0:566DpH � 100:566DpH� ðA1Þ

where the denominator is dominated by the first term of 10PZC/Kp.
Likewise, converting the implicit form of rb in Eq. (8), an explicit
form of the net surface charge rs is derived from the sum of r0

and rb as

rs ¼
FCtot

10PZC=KP þ ð10�0:566DpH þ 100:566DpHÞ

� 10�0:566DpH

1þ KaaðA�Þ10�0:434DpH �
100:566DpH

1þ KcaðCþÞ100:434DpH

" #

� FCtotKp

10PZC

10�0:566DpH

1þ KaaðA�Þ10�0:434DpH �
100:566DpH

1þ KcaðCþÞ100:434DpH

" #

ðA2Þ

If the association effect is neglected, the b-plane charge densityrb

arising from the association should be zero. In this regard, setting
either Ka = Kc = 0 or a(A�) = a(C+) = 0 in Eq. (6), it is readily confirmed
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that Eq. (A2) is reduced to Eq. (A1). Now, we have an explicit form of
rs relating all experimental parameters denoting the material
dependence. Recalling that Eq. (9) for charge balance offers a rela-
tionship between the potential wd (� f) and rs or rd, the potential
wd which will be fed to Eqs. (10)–(13) can be directly related to the
parameters in Eq. (A2). Here, the following approximations are made
for simplification, over the defined range of validity. The hyperbolic
sine function in Eq. (9) is approximated to the square function
1.0517(Fwd/2RT)2 as

rs ¼ �rd ¼ �
4000FI

j
sinh

Fwd

2RT

� �
� �1051:7 F3I

jR2T2 w2
d ðA3Þ

The maximum error of the approximation is revealed below 10%
in the range of Fwd/2RT 6 3.0 (corresponding to the DLCA and the
transition regimes). As addressed, equating Eq. (A2) to Eq. (A3),
the explicit functional form of wd is given by

w2
d ¼

jR2T2CtotKP

1051:7IF210PZC

10�0:566DpH

1þKaaðA�Þ10�0:434DpH�
100:566DpH

1þKcaðCþÞ100:434DpH

" #

ðA4Þ

Because the logarithmic function in Eq. (11) makes the follow-
ing analysis difficult, we adopted a simpler form suggested at small
potential as [1,6]

Uel ¼ 2pe0errw
2
d expð�jxÞ ðA5Þ

Substituting Eq. (A4) and the definition of j to Eq. (A5), an ex-
plicit relation of Uel to the parameters is given as

Uel ¼ 3:803prRTCtotKP

10PZCj

� 10�0:566DpH

1þ KaaðA�Þ10�0:434DpH �
100:566DpH

1þ KcaðCþÞ100:434DpH

" #
expð�jxÞ

ðA6Þ

Applying Eqs. (12) and (A6) to Eq. (13), a simplified form of the
Utot is obtained by

Utot ¼
3:803prRTCtotKP

10PZCj

� 10�0:566DpH

1þ KaaðA�Þ10�0:434DpH �
100:566DpH

1þ KcaðCþÞ100:434DpH

" #

� expð�jxÞ � A132r
12x

� a
j

expð�jxÞ � b
x
� a

j
ð1� jxÞ � b

x
ðA7Þ

where the exponential term of exp(�jx) is approximated to
(1 � jx). Now, setting the first derivative of Eq. (A7) equal to zero
(dUtot/dx = 0) gives the analytic solution of xmax = (b/a)1/2. Since
the term of jxmax is always smaller than 0.4 in the present condi-
tions, the approximation leads to an error of <10% Substituting xmax

to Eq. (A7), an approximated form of the maximum energy barrier
Utot,max is eventually obtained as

Utot;max �
a
j
ð1� jxmaxÞ �

b
xmax

¼ a
j
� 2

ffiffiffiffiffiffi
ab

p
ðA8Þ

Here, the maximum error arising in the course of the above der-
ivation processes was estimated up to 40%, mostly arising from the
approximation in Eq. (A5).

References

[1] (a) R.J. Hunter (Ed.), Foundation of Colloid Science, first ed., Clarendon press,
Oxford, 1987;
(b) E.J.W. Verwey, J.Th.G. Overbeek, Theory of Stability of Lyophobic Colloids,
first ed., Elsevier, Amsterdam, 1948.

[2] D. Lee, S. Yang, M. Choi, Appl. Phys. Lett. 79 (2001) 2459–2461.
[3] S.E. Pratsinis, Prog. Energy Combust. Sci. 24 (1998) 197–219.
[4] D. Lee, M. Choi, J. Aerosol Sci. 31 (2000) 1145–1163.
[5] D. Lee, M. Choi, J. Aerosol Sci. 33 (2002) 1–16.
[6] D.-H. Tsai, R. Zangmeister, L. Pease, M.J. Tarlov, M.R. Zachariah, Langmuir 24

(2008) 8483–8490.
[7] D. Lee, Langmuir 23 (2007) 6011–6018.
[8] R. Prasher, P.E. Phelan, P. Bhattacharya, Nano Lett. 6 (2006) 1529–1534.
[9] M. Reim, W. Koerner, J. Manara, S. Korder, M. Srduini-Schuster, H.-P. Ebert, J.

Fricke, Sol. Energy 9 (2005) 131–139.
[10] L. Mädler, A.A. Lall, S.K. Friedlander, Nanotechnology 17 (2006) 4783–4795.
[11] D. Fry, A. Chakrabarti, W. Kim, C.M. Sorensen, Phys. Rev. E 69 (2004) 61401-1–

061401-9.
[12] A. Hasmy, J. Sol-Gel Sci. Technol. 15 (1999) 137–146.
[13] P. Meakin, J. Sol-Gel Sci. Technol. 15 (1999) 97–117.
[14] M. Lattuada, H. Wu, A. Hasmy, M. Morbidelli, Langmuir 19 (2003) 6312–6316.
[15] M. Lattuada, H. Wu, M. Morbidelli, J. Colloid Interface Sci. 268 (2003)

106–120.
[16] S.D. Orrite, S. Stoll, P. Schurtenberger, Soft Matter 1 (2005) 364–371.
[17] P. Meakin, Phys. Rev. Lett. 51 (1983) 1119–1122.
[18] J.C. Gimel, T. Nicolai, D. Durand, J. Sol-Gel Sci. Technol. 15 (1999) 129–136.
[19] Y. Efendiev, M.R. Zachariah, J. Colloid Interface Sci. 249 (2002) 30–43.
[20] G.C. Ansell, E. Dickinson, Phys. Rev. A 35 (1986) 2349–2352.
[21] M. Cerbelaud, A. Videcoq, P. Abelard, C. Pagnoux, F. Rossignol, R. Ferrando,

Langmuir 24 (2008) 3001–3008.
[22] M. Lattuda, H. Wu, J. Sefcik, M. Morbidelli, J. Phys. Chem. B 110 (2006) 6574–

6586.
[23] D.E. Rosner, R. McGraw, P. Tandon, Ind. Eng. Chem. Res. 42 (2003) 2699–2713.
[24] D. Asnaghi, M. Carpineti, M. Giglio, M. Sozzi, Phys. Rev. A 45 (1992) 1018–

1023.
[25] A.Y. Kim, J.C. Berg, Langmuir 16 (2000) 2101–2104.
[26] M. Berka, J.A. Rice, Langmuir 21 (2005) 1223–1229.
[27] D. Lee, J.W. Kim, B.G. Kim, J. Phys. Chem. B 110 (2006) 4323–4328.
[28] N. Kallay, S. Zalac, Croat. Chem. Acta 74 (2001) 479–497.
[29] T. Kida, T. Oka, M. Nagano, Y. Ishiwata, X. Zheng, J. Am. Ceram. Soc. 90 (2007)

107–110.
[30] Q. Chen, L. Han, C. Gao, S. Che, Microporous Mesoporous Mater. 128 (2010)

203–212.
[31] I. Miletto, A. Gilardino, P. Zamburlin, S. Dalmazzo, D. Lovisolo, G. Caputo, G.

Viscardi, G. Martra, Dyes Pigm. 84 (2010) 121–127.
[32] M. Kosmulski, J. Colloid, Interface Sci. 298 (2006) 730–741.
[33] J. Lyklema (Ed.), Fundamental of Interface and Colloid Science, Academic Press,

London, 1991.
[34] R. Mueller, H.K. Kammler, K. Wegner, S.E. Pratsinis, Langmuir 19 (2003)

160–165.
[35] J.A. Lewis, J. Am. Ceram. Soc. 83 (2000) 2341–2359.
[36] M.Y. Han, H.K. Lee, Colloids Surf., A 202 (2002) 23–31.
[37] M. Mellema, J.H.J. van Opheusden, T. van Vliet, J. Chem. Phys. 111 (1999)

6129–6135.
[38] Z. Sun, S. Xu, G. Dai, Y. Li, Li Lou, Q. Liu, R. Zhu, J. Chem. Phys. 119 (2003) 2399–

2405.
[39] P. Tandon, D.E. Rosner, J. Colloid Interface Sci. 213 (1999) 273–286.
[40] J.C. Gimel, D. Durand, T. Nicolai, Phys. Rev. B 51 (1995) 11348–11357.
[41] P. Meakin, Phys. Scr. 46 (1992) 295–331.

S. Kim et al. / Journal of Colloid and Interface Science 344 (2010) 353–361 361


